語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Numerical nonsmooth optimization = s...
~
Bagirov, Adil M.
FindBook
Google Book
Amazon
博客來
Numerical nonsmooth optimization = state of the art algorithms /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Numerical nonsmooth optimization/ edited by Adil M. Bagirov ... [et al.].
其他題名:
state of the art algorithms /
其他作者:
Bagirov, Adil M.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xvii, 698 p. :ill., digital ;24 cm.
內容註:
Introduction -- Part I: General Methods -- Part II: Structure Exploiting Methods -- Part III: Methods for Special Problems -- Part IV: Derivative-free Methods.
Contained By:
Springer eBooks
標題:
Nonsmooth optimization. -
電子資源:
https://doi.org/10.1007/978-3-030-34910-3
ISBN:
9783030349103
Numerical nonsmooth optimization = state of the art algorithms /
Numerical nonsmooth optimization
state of the art algorithms /[electronic resource] :edited by Adil M. Bagirov ... [et al.]. - Cham :Springer International Publishing :2020. - xvii, 698 p. :ill., digital ;24 cm.
Introduction -- Part I: General Methods -- Part II: Structure Exploiting Methods -- Part III: Methods for Special Problems -- Part IV: Derivative-free Methods.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
ISBN: 9783030349103
Standard No.: 10.1007/978-3-030-34910-3doiSubjects--Topical Terms:
709245
Nonsmooth optimization.
LC Class. No.: QA402.5 / .N864 2020
Dewey Class. No.: 519.6
Numerical nonsmooth optimization = state of the art algorithms /
LDR
:02517nmm a2200337 a 4500
001
2216492
003
DE-He213
005
20200720143415.0
006
m d
007
cr nn 008maaau
008
201120s2020 sz s 0 eng d
020
$a
9783030349103
$q
(electronic bk.)
020
$a
9783030349097
$q
(paper)
024
7
$a
10.1007/978-3-030-34910-3
$2
doi
035
$a
978-3-030-34910-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.N864 2020
072
7
$a
KJT
$2
bicssc
072
7
$a
BUS049000
$2
bisacsh
072
7
$a
KJT
$2
thema
072
7
$a
KJM
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.N971 2020
245
0 0
$a
Numerical nonsmooth optimization
$h
[electronic resource] :
$b
state of the art algorithms /
$c
edited by Adil M. Bagirov ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xvii, 698 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Part I: General Methods -- Part II: Structure Exploiting Methods -- Part III: Methods for Special Problems -- Part IV: Derivative-free Methods.
520
$a
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
650
0
$a
Nonsmooth optimization.
$3
709245
650
1 4
$a
Operations Research, Management Science.
$3
1532996
650
2 4
$a
Operations Research/Decision Theory.
$3
890895
650
2 4
$a
Numeric Computing.
$3
892606
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Economic Theory/Quantitative Economics/Mathematical Methods.
$3
2162305
700
1
$a
Bagirov, Adil M.
$3
3448541
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-34910-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9391396
電子資源
11.線上閱覽_V
電子書
EB QA402.5 .N864 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入