語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Web recommendations systems
~
Venugopal, K. R.
FindBook
Google Book
Amazon
博客來
Web recommendations systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Web recommendations systems/ by K. R. Venugopal, K. C. Srikantaiah, Sejal Santosh Nimbhorkar.
作者:
Venugopal, K. R.
其他作者:
Srikantaiah, K. C.
出版者:
Singapore :Springer Singapore : : 2020.,
面頁冊數:
xxi, 164 p. :ill., digital ;24 cm.
內容註:
1 Introduction -- 2 Web Data Extraction and Integration System for Search Engine Result Pages -- 3 Mining and Analysis of Web Sequential Patterns -- 4 Automatic Discovery and Ranking of Synonyms for Search Keywords in the Web -- 5 Construction of Topic Directories using Levenshtein Similarity Weight -- 6 Related Search Recommendation with User Feedback Session -- 7 Webpage Recommendations based Web Navigation Prediction.
Contained By:
Springer eBooks
標題:
Recommender systems (Information filtering) -
電子資源:
https://doi.org/10.1007/978-981-15-2513-1
ISBN:
9789811525131
Web recommendations systems
Venugopal, K. R.
Web recommendations systems
[electronic resource] /by K. R. Venugopal, K. C. Srikantaiah, Sejal Santosh Nimbhorkar. - Singapore :Springer Singapore :2020. - xxi, 164 p. :ill., digital ;24 cm.
1 Introduction -- 2 Web Data Extraction and Integration System for Search Engine Result Pages -- 3 Mining and Analysis of Web Sequential Patterns -- 4 Automatic Discovery and Ranking of Synonyms for Search Keywords in the Web -- 5 Construction of Topic Directories using Levenshtein Similarity Weight -- 6 Related Search Recommendation with User Feedback Session -- 7 Webpage Recommendations based Web Navigation Prediction.
This book focuses on Web recommender systems, offering an overview of approaches to develop these state-of-the-art systems. It also presents algorithmic approaches in the field of Web recommendations by extracting knowledge from Web logs, Web page content and hyperlinks. Recommender systems have been used in diverse applications, including query log mining, social networking, news recommendations and computational advertising, and with the explosive growth of Web content, Web recommendations have become a critical aspect of all search engines. The book discusses how to measure the effectiveness of recommender systems, illustrating the methods with practical case studies. It strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with valuable insights into Web recommender systems.
ISBN: 9789811525131
Standard No.: 10.1007/978-981-15-2513-1doiSubjects--Topical Terms:
1002434
Recommender systems (Information filtering)
LC Class. No.: ZA3084 / .V45 2020
Dewey Class. No.: 005.56
Web recommendations systems
LDR
:02242nmm a2200325 a 4500
001
2216092
003
DE-He213
005
20200303013323.0
006
m d
007
cr nn 008maaau
008
201120s2020 si s 0 eng d
020
$a
9789811525131
$q
(electronic bk.)
020
$a
9789811525124
$q
(paper)
024
7
$a
10.1007/978-981-15-2513-1
$2
doi
035
$a
978-981-15-2513-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
ZA3084
$b
.V45 2020
072
7
$a
UMW
$2
bicssc
072
7
$a
COM060160
$2
bisacsh
072
7
$a
UMW
$2
thema
082
0 4
$a
005.56
$2
23
090
$a
ZA3084
$b
.V471 2020
100
1
$a
Venugopal, K. R.
$3
1002628
245
1 0
$a
Web recommendations systems
$h
[electronic resource] /
$c
by K. R. Venugopal, K. C. Srikantaiah, Sejal Santosh Nimbhorkar.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xxi, 164 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 Introduction -- 2 Web Data Extraction and Integration System for Search Engine Result Pages -- 3 Mining and Analysis of Web Sequential Patterns -- 4 Automatic Discovery and Ranking of Synonyms for Search Keywords in the Web -- 5 Construction of Topic Directories using Levenshtein Similarity Weight -- 6 Related Search Recommendation with User Feedback Session -- 7 Webpage Recommendations based Web Navigation Prediction.
520
$a
This book focuses on Web recommender systems, offering an overview of approaches to develop these state-of-the-art systems. It also presents algorithmic approaches in the field of Web recommendations by extracting knowledge from Web logs, Web page content and hyperlinks. Recommender systems have been used in diverse applications, including query log mining, social networking, news recommendations and computational advertising, and with the explosive growth of Web content, Web recommendations have become a critical aspect of all search engines. The book discusses how to measure the effectiveness of recommender systems, illustrating the methods with practical case studies. It strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with valuable insights into Web recommender systems.
650
0
$a
Recommender systems (Information filtering)
$3
1002434
650
1 4
$a
Web Development.
$3
3134872
650
2 4
$a
Image Processing and Computer Vision.
$3
891070
650
2 4
$a
Data Structures.
$3
891009
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
700
1
$a
Srikantaiah, K. C.
$3
3381682
700
1
$a
Santosh Nimbhorkar, Sejal.
$3
3448133
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-15-2513-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9390996
電子資源
11.線上閱覽_V
電子書
EB ZA3084 .V45 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入