Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Statistical modelling and machine le...
~
Srinivasa, K. G.
Linked to FindBook
Google Book
Amazon
博客來
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
Record Type:
Electronic resources : Monograph/item
Title/Author:
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications/ edited by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar.
other author:
Srinivasa, K. G.
Published:
Singapore :Springer Singapore : : 2020.,
Description:
xii, 317 p. :ill., digital ;24 cm.
[NT 15003449]:
Part 1: Bioinformatics -- Chapter 1. Introduction to Bioinformatics -- Chapter 2. Review about Bioinformatics, Databases, Sequence Alignment, Docking and Drug Discovery -- Chapter 3. Machine Learning for Bioinformatics -- Chapter 4. Impact of Machine Learning in Bioinformatics Research -- Chapter 5. Text-mining in Bioinformatics -- Chapter 6. Open Source Software Tools for Bioinformatics -- Part 2: Protein Structure Prediction and Gene Expression Analysis -- Chapter 7. A Study on Protein Structure Prediction -- Chapter 8. Computational Methods Used in Prediction of Protein Structure -- Chapter 9. Computational Methods for Inference of Gene Regulatory Networks from Gene Expression Data -- Chapter 10. Machine Learning Algorithms for Feature Selection from Gene Expression Data -- Part 3: Genomics and Proteomics -- Chapter 11. Unsupervised Techniques in Genomics -- Chapter 12. Supervised Techniques in Proteomics -- Chapter 13. Visualizing Codon Usage Within and Across Genomes: Concepts and Tools -- Chapter 14. Single-Cell Multiomics: Dissecting Cancer.
Contained By:
Springer eBooks
Subject:
Computational biology. -
Online resource:
https://doi.org/10.1007/978-981-15-2445-5
ISBN:
9789811524455
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
[electronic resource] /edited by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar. - Singapore :Springer Singapore :2020. - xii, 317 p. :ill., digital ;24 cm. - Algorithms for intelligent systems,2524-7565. - Algorithms for intelligent systems..
Part 1: Bioinformatics -- Chapter 1. Introduction to Bioinformatics -- Chapter 2. Review about Bioinformatics, Databases, Sequence Alignment, Docking and Drug Discovery -- Chapter 3. Machine Learning for Bioinformatics -- Chapter 4. Impact of Machine Learning in Bioinformatics Research -- Chapter 5. Text-mining in Bioinformatics -- Chapter 6. Open Source Software Tools for Bioinformatics -- Part 2: Protein Structure Prediction and Gene Expression Analysis -- Chapter 7. A Study on Protein Structure Prediction -- Chapter 8. Computational Methods Used in Prediction of Protein Structure -- Chapter 9. Computational Methods for Inference of Gene Regulatory Networks from Gene Expression Data -- Chapter 10. Machine Learning Algorithms for Feature Selection from Gene Expression Data -- Part 3: Genomics and Proteomics -- Chapter 11. Unsupervised Techniques in Genomics -- Chapter 12. Supervised Techniques in Proteomics -- Chapter 13. Visualizing Codon Usage Within and Across Genomes: Concepts and Tools -- Chapter 14. Single-Cell Multiomics: Dissecting Cancer.
This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture.
ISBN: 9789811524455
Standard No.: 10.1007/978-981-15-2445-5doiSubjects--Topical Terms:
590653
Computational biology.
LC Class. No.: QH324.2 / .S738 2020
Dewey Class. No.: 570.285
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
LDR
:02604nmm a2200337 a 4500
001
2215727
003
DE-He213
005
20200620161928.0
006
m d
007
cr nn 008maaau
008
201120s2020 si s 0 eng d
020
$a
9789811524455
$q
(electronic bk.)
020
$a
9789811524448
$q
(paper)
024
7
$a
10.1007/978-981-15-2445-5
$2
doi
035
$a
978-981-15-2445-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH324.2
$b
.S738 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
570.285
$2
23
090
$a
QH324.2
$b
.S797 2020
245
0 0
$a
Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications
$h
[electronic resource] /
$c
edited by K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 317 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Algorithms for intelligent systems,
$x
2524-7565
505
0
$a
Part 1: Bioinformatics -- Chapter 1. Introduction to Bioinformatics -- Chapter 2. Review about Bioinformatics, Databases, Sequence Alignment, Docking and Drug Discovery -- Chapter 3. Machine Learning for Bioinformatics -- Chapter 4. Impact of Machine Learning in Bioinformatics Research -- Chapter 5. Text-mining in Bioinformatics -- Chapter 6. Open Source Software Tools for Bioinformatics -- Part 2: Protein Structure Prediction and Gene Expression Analysis -- Chapter 7. A Study on Protein Structure Prediction -- Chapter 8. Computational Methods Used in Prediction of Protein Structure -- Chapter 9. Computational Methods for Inference of Gene Regulatory Networks from Gene Expression Data -- Chapter 10. Machine Learning Algorithms for Feature Selection from Gene Expression Data -- Part 3: Genomics and Proteomics -- Chapter 11. Unsupervised Techniques in Genomics -- Chapter 12. Supervised Techniques in Proteomics -- Chapter 13. Visualizing Codon Usage Within and Across Genomes: Concepts and Tools -- Chapter 14. Single-Cell Multiomics: Dissecting Cancer.
520
$a
This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture.
650
0
$a
Computational biology.
$3
590653
650
0
$a
Bioinformatics.
$3
553671
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Computational Biology/Bioinformatics.
$3
898313
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
Srinivasa, K. G.
$3
1002627
700
1
$a
Siddesh, G. M.
$3
3447502
700
1
$a
Manisekhar, S. R.
$3
3447503
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Algorithms for intelligent systems.
$3
3443393
856
4 0
$u
https://doi.org/10.1007/978-981-15-2445-5
950
$a
Intelligent Technologies and Robotics (Springer-42732)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9390631
電子資源
11.線上閱覽_V
電子書
EB QH324.2 .S738 2020
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login