語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hybrid intelligent technologies in e...
~
Hong, Wei-Chiang.
FindBook
Google Book
Amazon
博客來
Hybrid intelligent technologies in energy demand forecasting
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Hybrid intelligent technologies in energy demand forecasting/ by Wei-Chiang Hong.
作者:
Hong, Wei-Chiang.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xii, 179 p. :ill., digital ;24 cm.
內容註:
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory.
Contained By:
Springer eBooks
標題:
Energy consumption - Forecasting -
電子資源:
https://doi.org/10.1007/978-3-030-36529-5
ISBN:
9783030365295
Hybrid intelligent technologies in energy demand forecasting
Hong, Wei-Chiang.
Hybrid intelligent technologies in energy demand forecasting
[electronic resource] /by Wei-Chiang Hong. - Cham :Springer International Publishing :2020. - xii, 179 p. :ill., digital ;24 cm.
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
ISBN: 9783030365295
Standard No.: 10.1007/978-3-030-36529-5doiSubjects--Topical Terms:
3446250
Energy consumption
--Forecasting
LC Class. No.: HD9502.A2 / H664 2020
Dewey Class. No.: 333.79
Hybrid intelligent technologies in energy demand forecasting
LDR
:01970nmm a2200337 a 4500
001
2215107
003
DE-He213
005
20200514172449.0
006
m d
007
cr nn 008maaau
008
201119s2020 sz s 0 eng d
020
$a
9783030365295
$q
(electronic bk.)
020
$a
9783030365288
$q
(paper)
024
7
$a
10.1007/978-3-030-36529-5
$2
doi
035
$a
978-3-030-36529-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HD9502.A2
$b
H664 2020
072
7
$a
TH
$2
bicssc
072
7
$a
BUS070040
$2
bisacsh
072
7
$a
TH
$2
thema
072
7
$a
KNB
$2
thema
082
0 4
$a
333.79
$2
23
090
$a
HD9502.A2
$b
H772 2020
100
1
$a
Hong, Wei-Chiang.
$3
927794
245
1 0
$a
Hybrid intelligent technologies in energy demand forecasting
$h
[electronic resource] /
$c
by Wei-Chiang Hong.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 179 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory.
520
$a
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
650
0
$a
Energy consumption
$x
Forecasting
$x
Data processing.
$3
3446250
650
0
$a
Artificial intelligence.
$3
516317
650
1 4
$a
Energy Policy, Economics and Management.
$3
1532761
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Simulation and Modeling.
$3
890873
650
2 4
$a
Applications of Nonlinear Dynamics and Chaos Theory.
$3
3134772
650
2 4
$a
Renewable and Green Energy.
$3
928108
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-36529-5
950
$a
Energy (Springer-40367)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9390015
電子資源
11.線上閱覽_V
電子書
EB HD9502.A2 H664 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入