語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Reconfigurable cellular neural netwo...
~
Yalcin, Mustak E.
FindBook
Google Book
Amazon
博客來
Reconfigurable cellular neural networks and their applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Reconfigurable cellular neural networks and their applications/ by Mustak E. Yalcin, Tuba Ayhan, Ramazan Yeniceri.
作者:
Yalcin, Mustak E.
其他作者:
Ayhan, Tuba.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
vi, 74 p. :ill., digital ;24 cm.
內容註:
Introduction -- Artificial Neural Network Models -- Artificial Olfaction System -- Implementations of CNNs -- Index.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science) -
電子資源:
https://doi.org/10.1007/978-3-030-17840-6
ISBN:
9783030178406
Reconfigurable cellular neural networks and their applications
Yalcin, Mustak E.
Reconfigurable cellular neural networks and their applications
[electronic resource] /by Mustak E. Yalcin, Tuba Ayhan, Ramazan Yeniceri. - Cham :Springer International Publishing :2020. - vi, 74 p. :ill., digital ;24 cm. - SpringerBriefs in nonlinear circuits,2520-1433. - SpringerBriefs in nonlinear circuits..
Introduction -- Artificial Neural Network Models -- Artificial Olfaction System -- Implementations of CNNs -- Index.
This book explores how neural networks can be designed to analyze sensory data in a way that mimics natural systems. It introduces readers to the cellular neural network (CNN) and formulates it to match the behavior of the Wilson-Cowan model. In turn, two properties that are vital in nature are added to the CNN to help it more accurately deliver mimetic behavior: randomness of connection, and the presence of different dynamics (excitatory and inhibitory) within the same network. It uses an ID matrix to determine the location of excitatory and inhibitory neurons, and to reconfigure the network to optimize its topology. The book demonstrates that reconfiguring a single-layer CNN is an easier and more flexible solution than the procedure required in a multilayer CNN, in which excitatory and inhibitory neurons are separate, and that the key CNN criteria of a spatially invariant template and local coupling are fulfilled. In closing, the application of the authors' neuron population model as a feature extractor is exemplified using odor and electroencephalogram classification.
ISBN: 9783030178406
Standard No.: 10.1007/978-3-030-17840-6doiSubjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87
Dewey Class. No.: 006.3
Reconfigurable cellular neural networks and their applications
LDR
:02277nmm a2200337 a 4500
001
2213429
003
DE-He213
005
20200210095131.0
006
m d
007
cr nn 008maaau
008
201117s2020 sz s 0 eng d
020
$a
9783030178406
$q
(electronic bk.)
020
$a
9783030178390
$q
(paper)
024
7
$a
10.1007/978-3-030-17840-6
$2
doi
035
$a
978-3-030-17840-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
QA76.87
$b
.Y16 2020
100
1
$a
Yalcin, Mustak E.
$3
3442894
245
1 0
$a
Reconfigurable cellular neural networks and their applications
$h
[electronic resource] /
$c
by Mustak E. Yalcin, Tuba Ayhan, Ramazan Yeniceri.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
vi, 74 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in nonlinear circuits,
$x
2520-1433
505
0
$a
Introduction -- Artificial Neural Network Models -- Artificial Olfaction System -- Implementations of CNNs -- Index.
520
$a
This book explores how neural networks can be designed to analyze sensory data in a way that mimics natural systems. It introduces readers to the cellular neural network (CNN) and formulates it to match the behavior of the Wilson-Cowan model. In turn, two properties that are vital in nature are added to the CNN to help it more accurately deliver mimetic behavior: randomness of connection, and the presence of different dynamics (excitatory and inhibitory) within the same network. It uses an ID matrix to determine the location of excitatory and inhibitory neurons, and to reconfigure the network to optimize its topology. The book demonstrates that reconfiguring a single-layer CNN is an easier and more flexible solution than the procedure required in a multilayer CNN, in which excitatory and inhibitory neurons are separate, and that the key CNN criteria of a spatially invariant template and local coupling are fulfilled. In closing, the application of the authors' neuron population model as a feature extractor is exemplified using odor and electroencephalogram classification.
650
0
$a
Neural networks (Computer science)
$3
532070
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Electronic Circuits and Devices.
$3
1245773
650
2 4
$a
Circuits and Systems.
$3
896527
700
1
$a
Ayhan, Tuba.
$3
3442895
700
1
$a
Yeniceri, Ramazan.
$3
3442896
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in nonlinear circuits.
$3
3383047
856
4 0
$u
https://doi.org/10.1007/978-3-030-17840-6
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9388342
電子資源
11.線上閱覽_V
電子書
EB QA76.87
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入