語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sensor analysis for the Internet of ...
~
Stanley, Michael,
FindBook
Google Book
Amazon
博客來
Sensor analysis for the Internet of things /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Sensor analysis for the Internet of things // Michael Stanley, Jongmin Lee.
作者:
Stanley, Michael,
其他作者:
Lee, Jongmin,
面頁冊數:
1 online resource (139 p.)
內容註:
Sensor analysis for the Internet of things -- Abstract; Keywords -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- Nomenclature -- 1 Introduction -- 2 Sensors -- 3 Sensor Fusion -- 4 Machine Learning for Sensor Data -- 5 IoT Sensor Applications -- 6 Concluding Remarks and Summary -- Bibliography -- Authors' Biographies.
標題:
Multisensor data fusion. -
電子資源:
https://portal.igpublish.com/iglibrary/search/MCPB0006379.html
ISBN:
9781681732879
Sensor analysis for the Internet of things /
Stanley, Michael,
Sensor analysis for the Internet of things /
Michael Stanley, Jongmin Lee. - 1 online resource (139 p.) - Synthesis lectures on algorithms and software in engineering ;17. - Synthesis lectures on algorithms and software in engineering ;17..
Includes bibliographical references and index.
Sensor analysis for the Internet of things -- Abstract; Keywords -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- Nomenclature -- 1 Introduction -- 2 Sensors -- 3 Sensor Fusion -- 4 Machine Learning for Sensor Data -- 5 IoT Sensor Applications -- 6 Concluding Remarks and Summary -- Bibliography -- Authors' Biographies.
While it may be attractive to view sensors as simple transducers which convert physical quantities into electrical signals, the truth of the matter is more complex. The engineer should have a proper understanding of the physics involved in the conversion process, including interactions with other measurable quantities. A deep understanding of these interactions can be leveraged to apply sensor fusion techniques to minimize noise and/or extract additional information from sensor signals. Advances in microcontroller and MEMS manufacturing, along with improved internet connectivity, have enabled cost-effective wearable and Internet of Things sensor applications. At the same time, machine learning techniques have gone mainstream, so that those same applications can now be more intelligent than ever before. This book explores these topics in the context of a small set of sensor types. We provide some basic understanding of sensor operation for accelerometers, magnetometers, gyroscopes, and pressure sensors. We show how information from these can be fused to provide estimates of orientation. Then we explore the topics of machine learning and sensor data analytics.
Mode of access: World Wide Web.
ISBN: 9781681732879Subjects--Topical Terms:
581966
Multisensor data fusion.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: TK7872.D48
Dewey Class. No.: 681.2
Sensor analysis for the Internet of things /
LDR
:02477nmm a2200277 i 4500
001
2212275
006
m eo d
008
201107s2018 cau ob 001 0 eng d
020
$a
9781681732879
020
$a
9781681732886
020
$a
9781681732893
035
$a
MCPB0006379
040
$a
iG Publishing
$b
eng
$c
iG Publishing
$e
rda
050
0 0
$a
TK7872.D48
082
0 0
$a
681.2
100
1
$a
Stanley, Michael,
$e
author.
$3
3440540
245
1 0
$a
Sensor analysis for the Internet of things /
$c
Michael Stanley, Jongmin Lee.
264
1
$a
[San Rafael, California] :
$b
Morgan & Claypool Publishers,
$c
2018.
300
$a
1 online resource (139 p.)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
1
$a
Synthesis lectures on algorithms and software in engineering ;
$v
17
504
$a
Includes bibliographical references and index.
505
0
$a
Sensor analysis for the Internet of things -- Abstract; Keywords -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgments -- Nomenclature -- 1 Introduction -- 2 Sensors -- 3 Sensor Fusion -- 4 Machine Learning for Sensor Data -- 5 IoT Sensor Applications -- 6 Concluding Remarks and Summary -- Bibliography -- Authors' Biographies.
520
$a
While it may be attractive to view sensors as simple transducers which convert physical quantities into electrical signals, the truth of the matter is more complex. The engineer should have a proper understanding of the physics involved in the conversion process, including interactions with other measurable quantities. A deep understanding of these interactions can be leveraged to apply sensor fusion techniques to minimize noise and/or extract additional information from sensor signals. Advances in microcontroller and MEMS manufacturing, along with improved internet connectivity, have enabled cost-effective wearable and Internet of Things sensor applications. At the same time, machine learning techniques have gone mainstream, so that those same applications can now be more intelligent than ever before. This book explores these topics in the context of a small set of sensor types. We provide some basic understanding of sensor operation for accelerometers, magnetometers, gyroscopes, and pressure sensors. We show how information from these can be fused to provide estimates of orientation. Then we explore the topics of machine learning and sensor data analytics.
538
$a
Mode of access: World Wide Web.
650
0
$a
Multisensor data fusion.
$3
581966
650
0
$a
Internet of things.
$3
2057703
650
0
$a
Sensor networks.
$3
581965
650
0
$a
Machine learning.
$3
533906
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Lee, Jongmin,
$e
author.
$3
3440541
830
0
$a
Synthesis lectures on algorithms and software in engineering ;
$v
17.
$3
3440542
856
4 0
$u
https://portal.igpublish.com/iglibrary/search/MCPB0006379.html
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9387977
電子資源
11.線上閱覽_V
電子書
EB TK7872.D48
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入