Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Approaches to the Design of Sustaina...
~
Williams, Tova N.
Linked to FindBook
Google Book
Amazon
博客來
Approaches to the Design of Sustainable Permanent Hair Dyes.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Approaches to the Design of Sustainable Permanent Hair Dyes./
Author:
Williams, Tova N.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
Description:
376 p.
Notes:
Source: Dissertations Abstracts International, Volume: 80-05, Section: B.
Contained By:
Dissertations Abstracts International80-05B.
Subject:
Chemistry. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=11007240
ISBN:
9780438599369
Approaches to the Design of Sustainable Permanent Hair Dyes.
Williams, Tova N.
Approaches to the Design of Sustainable Permanent Hair Dyes.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 376 p.
Source: Dissertations Abstracts International, Volume: 80-05, Section: B.
Thesis (Ph.D.)--North Carolina State University, 2018.
This item must not be sold to any third party vendors.
Interest in designing sustainable permanent hair dyes derives from the toxicological concerns associated with certain commercial dyes, in particular the moderate to strong/extreme skin sensitization potential of certain precursors used to develop the dyes. While work has been undertaken to help address toxicological concerns of hair dyes, alternatives having commercial success are based on the conventional permanent hair dye coloration process and still may pose health problems. The conventional process involves the oxidation of small and essentially colorless precursors (e.g., p-phenylenediamine and resorcinol) within the hair fiber that couple to build oligomeric indo dyes that are difficult to desorb. The resultant depth of shade achieved is superior that of other hair dyes and provides a high degree of gray coverage. In fact, these dyes dominate the commercial realm and stimulate the multibillion-dollar global hair dye market for the millions of consumers (men and women) who use them. Approaches to the design of sustainable (less toxic) permanent hair dyes lie at the heart of the present study. In Part 1 of this study, two types of keratin films (opaque and translucent) were characterized for their potential as screening tools for predicting the efficacy of potential hair dyes using the hair dye, C.I. Acid Orange 7. Translucent keratin films, which were found to be less porous than opaque films and more like hair in this regard, were deemed better tools for predicting the efficacy of potential hair dyes on hair. C.I. Acid Orange 7 was found to be uniformly distributed in both film types. However, a higher concentration of dye was detected in translucent films following the rinsing process. In Part 2 of this study, a cheminformatics clustering analysis of the 313 compounds in a Hair Dye Substance Database (HDSD) developed in this investigation, revealed some semipermanent hair dyes grouped among several hair dye precursors. This finding suggested that these dyes share similar properties with the precursors and may diffuse into hair fibers similarly. Two of the semipermanent dyes (C.I. Basic Orange 1 and 2) were used as model compounds to screen the digitized component of the Max Weaver Dye Library (MWDL, 2,196 total compounds) to identify analogous structures. Two similarity search analyses were performed to funnel the selection of dyes to 4 dyes having a phenylazopyrimidine substructure, a substructure not found among any of the compounds in the HDSD. One dye was predicted to be a human skin sensitizer, and two of the dyes displayed good affinity towards hair. Thus, the HDSD was an effective screening tool for identifying potential hair dyes. In Part 3 of this study, the synthesis and characterization of metallizable azo dyes revealed that the dyes could be dimerized as a post-treatment on keratin fibers and films. The best degree of dye uptake was seen for an arylazonaphthol dye. It exhibited no or moderate aquatic toxicity at concentrations tested and was found to be non-mutagenic in the Ames test. Although it was predicted to be a human skin sensitizer, this result requires experimental validation. The wash resistance of both unmetallized and metallized (Al3+ and Fe3+) forms of the dye at up to 10 wash cycles was better than observed for a commercial red permanent hair dye. Indeed, the wash resistance of metallized dye was best, indicating its potential as a permanent hair dye replacement.
ISBN: 9780438599369Subjects--Topical Terms:
516420
Chemistry.
Approaches to the Design of Sustainable Permanent Hair Dyes.
LDR
:04547nmm a2200325 4500
001
2210649
005
20191121124252.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438599369
035
$a
(MiAaPQ)AAI11007240
035
$a
AAI11007240
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Williams, Tova N.
$3
3437787
245
1 0
$a
Approaches to the Design of Sustainable Permanent Hair Dyes.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
376 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-05, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
502
$a
Thesis (Ph.D.)--North Carolina State University, 2018.
506
$a
This item must not be sold to any third party vendors.
506
$a
This item must not be added to any third party search indexes.
520
$a
Interest in designing sustainable permanent hair dyes derives from the toxicological concerns associated with certain commercial dyes, in particular the moderate to strong/extreme skin sensitization potential of certain precursors used to develop the dyes. While work has been undertaken to help address toxicological concerns of hair dyes, alternatives having commercial success are based on the conventional permanent hair dye coloration process and still may pose health problems. The conventional process involves the oxidation of small and essentially colorless precursors (e.g., p-phenylenediamine and resorcinol) within the hair fiber that couple to build oligomeric indo dyes that are difficult to desorb. The resultant depth of shade achieved is superior that of other hair dyes and provides a high degree of gray coverage. In fact, these dyes dominate the commercial realm and stimulate the multibillion-dollar global hair dye market for the millions of consumers (men and women) who use them. Approaches to the design of sustainable (less toxic) permanent hair dyes lie at the heart of the present study. In Part 1 of this study, two types of keratin films (opaque and translucent) were characterized for their potential as screening tools for predicting the efficacy of potential hair dyes using the hair dye, C.I. Acid Orange 7. Translucent keratin films, which were found to be less porous than opaque films and more like hair in this regard, were deemed better tools for predicting the efficacy of potential hair dyes on hair. C.I. Acid Orange 7 was found to be uniformly distributed in both film types. However, a higher concentration of dye was detected in translucent films following the rinsing process. In Part 2 of this study, a cheminformatics clustering analysis of the 313 compounds in a Hair Dye Substance Database (HDSD) developed in this investigation, revealed some semipermanent hair dyes grouped among several hair dye precursors. This finding suggested that these dyes share similar properties with the precursors and may diffuse into hair fibers similarly. Two of the semipermanent dyes (C.I. Basic Orange 1 and 2) were used as model compounds to screen the digitized component of the Max Weaver Dye Library (MWDL, 2,196 total compounds) to identify analogous structures. Two similarity search analyses were performed to funnel the selection of dyes to 4 dyes having a phenylazopyrimidine substructure, a substructure not found among any of the compounds in the HDSD. One dye was predicted to be a human skin sensitizer, and two of the dyes displayed good affinity towards hair. Thus, the HDSD was an effective screening tool for identifying potential hair dyes. In Part 3 of this study, the synthesis and characterization of metallizable azo dyes revealed that the dyes could be dimerized as a post-treatment on keratin fibers and films. The best degree of dye uptake was seen for an arylazonaphthol dye. It exhibited no or moderate aquatic toxicity at concentrations tested and was found to be non-mutagenic in the Ames test. Although it was predicted to be a human skin sensitizer, this result requires experimental validation. The wash resistance of both unmetallized and metallized (Al3+ and Fe3+) forms of the dye at up to 10 wash cycles was better than observed for a commercial red permanent hair dye. Indeed, the wash resistance of metallized dye was best, indicating its potential as a permanent hair dye replacement.
590
$a
School code: 0155.
650
4
$a
Chemistry.
$3
516420
650
4
$a
Polymer chemistry.
$3
3173488
650
4
$a
Environmental science.
$3
677245
690
$a
0485
690
$a
0495
690
$a
0768
710
2
$a
North Carolina State University.
$b
Fiber and Polymer Science.
$3
2091959
773
0
$t
Dissertations Abstracts International
$g
80-05B.
790
$a
0155
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=11007240
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9387198
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login