語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Quantifying and Improving Error Sens...
~
Steers, Jennifer Mariah.
FindBook
Google Book
Amazon
博客來
Quantifying and Improving Error Sensitivity of Intensity Modulated Radiation Therapy Quality Assurance.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantifying and Improving Error Sensitivity of Intensity Modulated Radiation Therapy Quality Assurance./
作者:
Steers, Jennifer Mariah.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
364 p.
附註:
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
Contained By:
Dissertations Abstracts International79-12B.
標題:
Applied physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10826493
ISBN:
9780438021310
Quantifying and Improving Error Sensitivity of Intensity Modulated Radiation Therapy Quality Assurance.
Steers, Jennifer Mariah.
Quantifying and Improving Error Sensitivity of Intensity Modulated Radiation Therapy Quality Assurance.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 364 p.
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2018.
This item must not be sold to any third party vendors.
Purpose: To quantify and elucidate factors affecting error sensitivity in current IMRT QA comparisons performed with the gamma comparison, to investigate causes for gamma comparison insensitivity, and to utilize these results to develop and validate a new method for analyzing IMRT QA dose distributions in the clinic. Methods: Over 20,000 gamma comparisons were performed for three detector geometries - ArcCHECK, MapCHECK, and Delta 4 - for a variety of IMRT and VMAT cases in the presence of induced errors. Differences in error sensitivity for each device geometry and delivery technique were studied with the use of 1mm vs. 1mm calculation-only comparisons and in-house MATLAB gamma comparison software developed specifically for this project. Additionally, the effects of spatial sampling for each device were evaluated using gamma comparisons performed at the true spatial sampling of each detector compared to those at 1mm. Patterns of gamma failures were also investigated in the presence of induced errors of increasing magnitude. Results from these gamma comparisons were considered in developing a new comparison technique for IMRT QA analysis. A new analysis method that segments the IMRT QA comparisons by different dose and gradient thresholds was developed with the use of known induced errors in a calculation-only scenario for the ArcCHECK, MapCHECK, and Delta 4 measurement geometries. Results from the new method were validated for a separate cohort of patient plans, as well as with the use of real plan measurements with and without intentional errors on the MapCHECK device. Results: Differences in gamma comparison error sensitivity were observed for the ArcCHECK, MapCHECK, and Delta 4 geometries when removing the effects of different spatial sampling for each device. While sensitivity was error type-specific for most studied gamma criteria, a gamma criterion with a 10% low dose threshold and local dose difference normalization appeared to offer similar sensitivity across the three devices. For more commonly used gamma criteria, the Delta 4 appeared more sensitive for the majority of induced error types. Additionally, error sensitivity was lower for VMAT cases compared to IMRT cases across all detector geometries. Reducing the spatial sampling of each device from 1mm to the true spatial sampling of the device did not noticeably affect gamma comparison error sensitivity. In evaluating patterns of gamma failures and gamma value maps in the presence of induced errors of increasing magnitude, it was observed that high dose gradients likely limit the sensitivity of the gamma comparison, regardless of dose difference normalization or detector geometry. Additionally, for some cases the number of diodes in real measurements not falling along these gradients may be alarmingly low, which may help explain why the gamma comparison can fail to flag large errors for certain cases. A new method, gradient-dose segmented analysis (GDSA) was developed to allow more clinically meaningful and sensitive IMRT QA comparisons. This method segments the comparison points into regions of high-gradient, high-dose low-gradient, and low-dose low-gradient points. The mean local dose difference in high-dose low-gradient regions of the comparison was found to predict true changes in PTV mean in the patient DVH. The development of GDSA made use of over 180,000 comparisons to select appropriate dose and gradient thresholds for IMRT and VMAT cases on the MapCHECK, Delta 4, and ArcCHECK devices. Predictions for change in PTV mean dose performed best for the MapCHECK and Delta 4 geometries, with a nearly 1:1 correlation between predicted and true change in PTV mean dose. Additionally, as a binary pass/fail metric, GDSA exhibited higher sensitivity and specificity than five studied gamma criteria. GDSA results were validated with a separate cohort of patients as well as real MapCHECK measurements. GDSA is feasible for clinical implementation as it would not require an increase in time spent analyzing the results. Conclusions: A variety of measurement scenarios were considered in controlled calculation-only comparisons that suggest device-specific and delivery technique-specific gamma criteria may be appropriate in order to achieve similar sensitivity in IMRT QA comparisons across the field. Additionally, the complexity of gradient maps in current IMRT QA appears to be a driving factor in error sensitivity for the gamma comparison. Finally, the gradient-dose segmented analysis (GDSA) method has been developed and validated for the purpose of IMRT QA analysis for three different detector devices. GDSA was shown to predict changes in PTV mean in the patient DVH using only information from the calculations and measurements in the phantom geometry. As a binary pass/fail metric, GDSA was also shown to be more sensitive and specific than the gamma comparison. Results from this new analysis technique can help predict the clinical relevance of dose differences in IMRT QA measurements, thus offering more meaningful IMRT QA results.
ISBN: 9780438021310Subjects--Topical Terms:
3343996
Applied physics.
Quantifying and Improving Error Sensitivity of Intensity Modulated Radiation Therapy Quality Assurance.
LDR
:06236nmm a2200337 4500
001
2210435
005
20191121124220.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438021310
035
$a
(MiAaPQ)AAI10826493
035
$a
(MiAaPQ)ucla:16841
035
$a
AAI10826493
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Steers, Jennifer Mariah.
$3
3437575
245
1 0
$a
Quantifying and Improving Error Sensitivity of Intensity Modulated Radiation Therapy Quality Assurance.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
364 p.
500
$a
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Low, Daniel A.;Fraass, Benedick A.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2018.
506
$a
This item must not be sold to any third party vendors.
520
$a
Purpose: To quantify and elucidate factors affecting error sensitivity in current IMRT QA comparisons performed with the gamma comparison, to investigate causes for gamma comparison insensitivity, and to utilize these results to develop and validate a new method for analyzing IMRT QA dose distributions in the clinic. Methods: Over 20,000 gamma comparisons were performed for three detector geometries - ArcCHECK, MapCHECK, and Delta 4 - for a variety of IMRT and VMAT cases in the presence of induced errors. Differences in error sensitivity for each device geometry and delivery technique were studied with the use of 1mm vs. 1mm calculation-only comparisons and in-house MATLAB gamma comparison software developed specifically for this project. Additionally, the effects of spatial sampling for each device were evaluated using gamma comparisons performed at the true spatial sampling of each detector compared to those at 1mm. Patterns of gamma failures were also investigated in the presence of induced errors of increasing magnitude. Results from these gamma comparisons were considered in developing a new comparison technique for IMRT QA analysis. A new analysis method that segments the IMRT QA comparisons by different dose and gradient thresholds was developed with the use of known induced errors in a calculation-only scenario for the ArcCHECK, MapCHECK, and Delta 4 measurement geometries. Results from the new method were validated for a separate cohort of patient plans, as well as with the use of real plan measurements with and without intentional errors on the MapCHECK device. Results: Differences in gamma comparison error sensitivity were observed for the ArcCHECK, MapCHECK, and Delta 4 geometries when removing the effects of different spatial sampling for each device. While sensitivity was error type-specific for most studied gamma criteria, a gamma criterion with a 10% low dose threshold and local dose difference normalization appeared to offer similar sensitivity across the three devices. For more commonly used gamma criteria, the Delta 4 appeared more sensitive for the majority of induced error types. Additionally, error sensitivity was lower for VMAT cases compared to IMRT cases across all detector geometries. Reducing the spatial sampling of each device from 1mm to the true spatial sampling of the device did not noticeably affect gamma comparison error sensitivity. In evaluating patterns of gamma failures and gamma value maps in the presence of induced errors of increasing magnitude, it was observed that high dose gradients likely limit the sensitivity of the gamma comparison, regardless of dose difference normalization or detector geometry. Additionally, for some cases the number of diodes in real measurements not falling along these gradients may be alarmingly low, which may help explain why the gamma comparison can fail to flag large errors for certain cases. A new method, gradient-dose segmented analysis (GDSA) was developed to allow more clinically meaningful and sensitive IMRT QA comparisons. This method segments the comparison points into regions of high-gradient, high-dose low-gradient, and low-dose low-gradient points. The mean local dose difference in high-dose low-gradient regions of the comparison was found to predict true changes in PTV mean in the patient DVH. The development of GDSA made use of over 180,000 comparisons to select appropriate dose and gradient thresholds for IMRT and VMAT cases on the MapCHECK, Delta 4, and ArcCHECK devices. Predictions for change in PTV mean dose performed best for the MapCHECK and Delta 4 geometries, with a nearly 1:1 correlation between predicted and true change in PTV mean dose. Additionally, as a binary pass/fail metric, GDSA exhibited higher sensitivity and specificity than five studied gamma criteria. GDSA results were validated with a separate cohort of patients as well as real MapCHECK measurements. GDSA is feasible for clinical implementation as it would not require an increase in time spent analyzing the results. Conclusions: A variety of measurement scenarios were considered in controlled calculation-only comparisons that suggest device-specific and delivery technique-specific gamma criteria may be appropriate in order to achieve similar sensitivity in IMRT QA comparisons across the field. Additionally, the complexity of gradient maps in current IMRT QA appears to be a driving factor in error sensitivity for the gamma comparison. Finally, the gradient-dose segmented analysis (GDSA) method has been developed and validated for the purpose of IMRT QA analysis for three different detector devices. GDSA was shown to predict changes in PTV mean in the patient DVH using only information from the calculations and measurements in the phantom geometry. As a binary pass/fail metric, GDSA was also shown to be more sensitive and specific than the gamma comparison. Results from this new analysis technique can help predict the clinical relevance of dose differences in IMRT QA measurements, thus offering more meaningful IMRT QA results.
590
$a
School code: 0031.
650
4
$a
Applied physics.
$3
3343996
650
4
$a
Medicine.
$3
641104
650
4
$a
Nuclear physics.
$3
517741
690
$a
0215
690
$a
0564
690
$a
0756
710
2
$a
University of California, Los Angeles.
$b
Biomedical Physics 0119.
$3
3178859
773
0
$t
Dissertations Abstracts International
$g
79-12B.
790
$a
0031
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10826493
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9386984
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入