語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Development of a Complexity-Reduced,...
~
Abrantes, Richard Jun Espino.
FindBook
Google Book
Amazon
博客來
Development of a Complexity-Reduced, Collisional-Radiative Model for Multiphysics Plasma Simulations.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Development of a Complexity-Reduced, Collisional-Radiative Model for Multiphysics Plasma Simulations./
作者:
Abrantes, Richard Jun Espino.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
182 p.
附註:
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
Contained By:
Dissertations Abstracts International79-12B.
標題:
Applied Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10826349
ISBN:
9780438021303
Development of a Complexity-Reduced, Collisional-Radiative Model for Multiphysics Plasma Simulations.
Abrantes, Richard Jun Espino.
Development of a Complexity-Reduced, Collisional-Radiative Model for Multiphysics Plasma Simulations.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 182 p.
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2018.
This item is not available from ProQuest Dissertations & Theses.
The influence of plasma physics on modern technology spans many disciplines beyond the fields of physics and engineering. The fundamental operation of forthcoming plasma physics devices are becoming increasingly complex, producing transient plasma structures and instabilities that can affect any of these devices' nominal performance conditions. One set of underlying physical phenomenon that can impact the plasma evolution in these devices derives from the atomic kinetics. A fully-resolved numerical simulation of these plasma systems involves solving the time-dependent atomic kinetics using a collisional-radiative model. However, a plasma simulation that includes such an atomic model exacerbates the problem's dimensionality because of the resolution of the atomic structure and number of atomic levels that must be resolved. The goal of this dissertation is to develop and implement state-of-the-art complexity reduction techniques to accurately simulate the atomic kinetics in reasonable computational times, without restricting the model to any atomic species or any single application. This approach will enable researchers to assess and analyze complex features of new plasma devices and experiments impacted by atomic kinetics. The collisional-radiative model's rate equations were first extended to include energy equations to study laser-induced breakdown events. This study was used to verify processes affected by energy transfers due to the energy equations' coupling to the atomic state densities' rate equations. Here, multiphoton ionization and inverse Bremsstrahlung were used as the laser source terms to simulate laser-induced breakdown events similar to experimental conditions found in the literature. Once the simulations were deemed sufficient to capture the atomic kinetics observed in breakdown experiments, the entire kinetics model was used as the foundation to implement and investigate the effect of complexity-reduction algorithms. The techniques explored in this work included the quasi-steady-state (QSS) solution, uniform grouping, and Boltzmann grouping. These techniques were then tested against isothermal and Planckian irradiation test cases; amongst all of the reduction algorithms, the Boltzmann grouping technique was found to hold the most promise for its flexible representation of atomic state distributions across a wide range of plasma regimes. The collisional-radiative model's symbiotic connection with atomic codes additionally allows these models to become tools to be used for spectroscopic analysis. Spectral images of chlorine generated for the NLTE-10 workshop verified high-density, high-temperature spectral data obtained from a newly-constructed spectrometer called OHREX. Accurate comparisons were observed among the present findings, results from other collisional-radiative models in the scientific community, and the OHREX experimental data presented at the workshop. Additionally, spectral comparisons between the model and a low-density, low temperature inductively-coupled argon plasma at the Air Force Research Laboratory were attempted. It was found that spectral comparisons were poorly matched as a result of the preferential disposition of atomic codes for high-Z ions. Hence, additional analysis is needed to properly capture detailed atomic kinetics for low-Z applications.
ISBN: 9780438021303Subjects--Topical Terms:
1669109
Applied Mathematics.
Development of a Complexity-Reduced, Collisional-Radiative Model for Multiphysics Plasma Simulations.
LDR
:04565nmm a2200349 4500
001
2210434
005
20191121124220.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438021303
035
$a
(MiAaPQ)AAI10826349
035
$a
(MiAaPQ)ucla:16831
035
$a
AAI10826349
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Abrantes, Richard Jun Espino.
$3
3437574
245
1 0
$a
Development of a Complexity-Reduced, Collisional-Radiative Model for Multiphysics Plasma Simulations.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
182 p.
500
$a
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Karagozian, Ann R.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2018.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be sold to any third party vendors.
520
$a
The influence of plasma physics on modern technology spans many disciplines beyond the fields of physics and engineering. The fundamental operation of forthcoming plasma physics devices are becoming increasingly complex, producing transient plasma structures and instabilities that can affect any of these devices' nominal performance conditions. One set of underlying physical phenomenon that can impact the plasma evolution in these devices derives from the atomic kinetics. A fully-resolved numerical simulation of these plasma systems involves solving the time-dependent atomic kinetics using a collisional-radiative model. However, a plasma simulation that includes such an atomic model exacerbates the problem's dimensionality because of the resolution of the atomic structure and number of atomic levels that must be resolved. The goal of this dissertation is to develop and implement state-of-the-art complexity reduction techniques to accurately simulate the atomic kinetics in reasonable computational times, without restricting the model to any atomic species or any single application. This approach will enable researchers to assess and analyze complex features of new plasma devices and experiments impacted by atomic kinetics. The collisional-radiative model's rate equations were first extended to include energy equations to study laser-induced breakdown events. This study was used to verify processes affected by energy transfers due to the energy equations' coupling to the atomic state densities' rate equations. Here, multiphoton ionization and inverse Bremsstrahlung were used as the laser source terms to simulate laser-induced breakdown events similar to experimental conditions found in the literature. Once the simulations were deemed sufficient to capture the atomic kinetics observed in breakdown experiments, the entire kinetics model was used as the foundation to implement and investigate the effect of complexity-reduction algorithms. The techniques explored in this work included the quasi-steady-state (QSS) solution, uniform grouping, and Boltzmann grouping. These techniques were then tested against isothermal and Planckian irradiation test cases; amongst all of the reduction algorithms, the Boltzmann grouping technique was found to hold the most promise for its flexible representation of atomic state distributions across a wide range of plasma regimes. The collisional-radiative model's symbiotic connection with atomic codes additionally allows these models to become tools to be used for spectroscopic analysis. Spectral images of chlorine generated for the NLTE-10 workshop verified high-density, high-temperature spectral data obtained from a newly-constructed spectrometer called OHREX. Accurate comparisons were observed among the present findings, results from other collisional-radiative models in the scientific community, and the OHREX experimental data presented at the workshop. Additionally, spectral comparisons between the model and a low-density, low temperature inductively-coupled argon plasma at the Air Force Research Laboratory were attempted. It was found that spectral comparisons were poorly matched as a result of the preferential disposition of atomic codes for high-Z ions. Hence, additional analysis is needed to properly capture detailed atomic kinetics for low-Z applications.
590
$a
School code: 0031.
650
4
$a
Applied Mathematics.
$3
1669109
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Plasma physics.
$3
3175417
690
$a
0364
690
$a
0538
690
$a
0759
710
2
$a
University of California, Los Angeles.
$b
Aerospace Engineering 0279.
$3
2092189
773
0
$t
Dissertations Abstracts International
$g
79-12B.
790
$a
0031
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10826349
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9386983
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入