語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Alterations in Bone Tissue Propertie...
~
Chen, Julia Ting Hsuan.
FindBook
Google Book
Amazon
博客來
Alterations in Bone Tissue Properties with Parathyroid Hormone Treatment.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Alterations in Bone Tissue Properties with Parathyroid Hormone Treatment./
作者:
Chen, Julia Ting Hsuan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
166 p.
附註:
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
Contained By:
Dissertations Abstracts International79-12B.
標題:
Engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10746756
ISBN:
9780438025752
Alterations in Bone Tissue Properties with Parathyroid Hormone Treatment.
Chen, Julia Ting Hsuan.
Alterations in Bone Tissue Properties with Parathyroid Hormone Treatment.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 166 p.
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
Thesis (Ph.D.)--Cornell University, 2018.
This item is not available from ProQuest Dissertations & Theses.
Osteoporosis, an age-related bone disease characterized by low bone mass, is a potential public health problem responsible for over 8.9 million fractures annually. From an engineering perspective to understanding the mechanism of increased fragility with osteoporosis, we applied engineering theory to study this complex composite material, bone. Amount of bone, bone distribution, and tissue material properties are determinants of whole bone strength. Parathyroid hormone (PTH, teriparatide, hPTH [1-34]) is a FDA-approved anabolic osteoporosis treatment. PTH has shown to reduce fracture risk by over 50% and increased bone volume fraction. However, the alterations in material properties and mechanical properties with PTH treatment, and the correlations to bone mechanical failure are unknown. The objectives of this research were to 1) examine alterations in microstructure and tissue properties of both cortical and cancellous bone with PTH treatment using an osteopenia sheep model, and 2) investigate the influence of microstructure and anisotropic material properties on crack propagation in a pre-notched cortical beam under bending. To investigate the alterations in tissue properties across different length scales, a large, multi-level experiment was designed for both cortical and cancellous bone in an osteopenia sheep model. The first study focused on cortical bone and the effect of PTH treatment was greater at the micro- and nanoscale than at the whole bone level. There was no difference with whole-bone strength; however, fatigue life has shown to increase compared to other bisphosphonate-treated samples whereas fracture toughness was decreased in PTH-treated group and osteon density was higher. Furthermore, mineralization increased whereas indentation modulus decreased and hardness reduced with PTH treatment. Millimeter and nano-scale material properties were correlated with whole bone strength, but fatigue properties correlated little to bending strength or fracture toughness. In the second study, cancellous bone was examined. There was no difference in monotonic compressive strength with PTH treatment; however, PTH-treated group preserved mechanical properties during cyclic loading compared to vehicle group. Additionally, PTH increased the volume fraction of rod-type trabeculae and decreased mineralization whereas nanoindentaion and hardness were not different. Correlating tissue composition, microstructure, and mechanical performance, energy dissipation was highly correlated with volume fraction of rods and mineralization. In the third study, fracture behavior in a single pre-notched cortical bone tissue was examined with finite element based simulation software (FRANC2D). The role of anisotropy of fracture toughness and of altered microstructure in crack trajectory and the force needed to propagate a crack was investigated. Cortical bone with more osteons located further away from the applied loads to maximize intact material would withstand more load before propagating cracks and fracturing.
ISBN: 9780438025752Subjects--Topical Terms:
586835
Engineering.
Alterations in Bone Tissue Properties with Parathyroid Hormone Treatment.
LDR
:04261nmm a2200361 4500
001
2210290
005
20191121124159.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438025752
035
$a
(MiAaPQ)AAI10746756
035
$a
(MiAaPQ)cornellgrad:10731
035
$a
AAI10746756
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chen, Julia Ting Hsuan.
$3
3437432
245
1 0
$a
Alterations in Bone Tissue Properties with Parathyroid Hormone Treatment.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
166 p.
500
$a
Source: Dissertations Abstracts International, Volume: 79-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Meulen, Marjolein C.H. van der.
502
$a
Thesis (Ph.D.)--Cornell University, 2018.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be sold to any third party vendors.
520
$a
Osteoporosis, an age-related bone disease characterized by low bone mass, is a potential public health problem responsible for over 8.9 million fractures annually. From an engineering perspective to understanding the mechanism of increased fragility with osteoporosis, we applied engineering theory to study this complex composite material, bone. Amount of bone, bone distribution, and tissue material properties are determinants of whole bone strength. Parathyroid hormone (PTH, teriparatide, hPTH [1-34]) is a FDA-approved anabolic osteoporosis treatment. PTH has shown to reduce fracture risk by over 50% and increased bone volume fraction. However, the alterations in material properties and mechanical properties with PTH treatment, and the correlations to bone mechanical failure are unknown. The objectives of this research were to 1) examine alterations in microstructure and tissue properties of both cortical and cancellous bone with PTH treatment using an osteopenia sheep model, and 2) investigate the influence of microstructure and anisotropic material properties on crack propagation in a pre-notched cortical beam under bending. To investigate the alterations in tissue properties across different length scales, a large, multi-level experiment was designed for both cortical and cancellous bone in an osteopenia sheep model. The first study focused on cortical bone and the effect of PTH treatment was greater at the micro- and nanoscale than at the whole bone level. There was no difference with whole-bone strength; however, fatigue life has shown to increase compared to other bisphosphonate-treated samples whereas fracture toughness was decreased in PTH-treated group and osteon density was higher. Furthermore, mineralization increased whereas indentation modulus decreased and hardness reduced with PTH treatment. Millimeter and nano-scale material properties were correlated with whole bone strength, but fatigue properties correlated little to bending strength or fracture toughness. In the second study, cancellous bone was examined. There was no difference in monotonic compressive strength with PTH treatment; however, PTH-treated group preserved mechanical properties during cyclic loading compared to vehicle group. Additionally, PTH increased the volume fraction of rod-type trabeculae and decreased mineralization whereas nanoindentaion and hardness were not different. Correlating tissue composition, microstructure, and mechanical performance, energy dissipation was highly correlated with volume fraction of rods and mineralization. In the third study, fracture behavior in a single pre-notched cortical bone tissue was examined with finite element based simulation software (FRANC2D). The role of anisotropy of fracture toughness and of altered microstructure in crack trajectory and the force needed to propagate a crack was investigated. Cortical bone with more osteons located further away from the applied loads to maximize intact material would withstand more load before propagating cracks and fracturing.
590
$a
School code: 0058.
650
4
$a
Engineering.
$3
586835
650
4
$a
Biomedical engineering.
$3
535387
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Biomechanics.
$3
548685
690
$a
0537
690
$a
0541
690
$a
0548
690
$a
0648
710
2
$a
Cornell University.
$b
Mechanical Engineering.
$3
2093058
773
0
$t
Dissertations Abstracts International
$g
79-12B.
790
$a
0058
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10746756
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9386839
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入