語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Max-Plus Matrix Multiplication Libra...
~
Ghalsasi, Prerana Prakash.
FindBook
Google Book
Amazon
博客來
Max-Plus Matrix Multiplication Library for GPUs - MPMML.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Max-Plus Matrix Multiplication Library for GPUs - MPMML./
作者:
Ghalsasi, Prerana Prakash.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
63 p.
附註:
Source: Masters Abstracts International, Volume: 80-12.
Contained By:
Masters Abstracts International80-12.
標題:
Computer Engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13856342
ISBN:
9781392274385
Max-Plus Matrix Multiplication Library for GPUs - MPMML.
Ghalsasi, Prerana Prakash.
Max-Plus Matrix Multiplication Library for GPUs - MPMML.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 63 p.
Source: Masters Abstracts International, Volume: 80-12.
Thesis (M.S.)--Colorado State University, 2019.
This item must not be sold to any third party vendors.
Max-Plus algebra finds its applications in discrete event simulations, dynamic programming, biological sequence comparisons etc. Although there exist highly tuned libraries like CUDA Linear Algebra Subprograms (CuBLAS) [1] for matrix operations, they implement the standard matrix-multiplication (multiply-add) for floating points. We found no standard library for Max-Plus-Matrix-Multiplication (MPMM) on integers. Hence, we developed a highly tuned parallelized MPMM library kernel. We chose GPUs as hardware platform for this work because of their significantly more parallelism and arithmetic functional units as compared to CPUs. We designed this kernel to be portable across three successive Nvidia GPU architectures and it achieves performance in the range 3065 GOPs/S - 3631 GOPs/S on all of these architectures. We closely followed the benchmarking approach described by Volkov et al. [2] when they contributed to cuBLAS. This MPMMkernel can be part of a max-plus algebra library for GPUs and can help speed up Biological Sequence comparison applications like BPMax.
ISBN: 9781392274385Subjects--Topical Terms:
1567821
Computer Engineering.
Max-Plus Matrix Multiplication Library for GPUs - MPMML.
LDR
:02125nmm a2200337 4500
001
2209233
005
20191025102901.5
008
201008s2019 ||||||||||||||||| ||eng d
020
$a
9781392274385
035
$a
(MiAaPQ)AAI13856342
035
$a
(MiAaPQ)colostate:15461
035
$a
AAI13856342
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ghalsasi, Prerana Prakash.
$3
3436314
245
1 0
$a
Max-Plus Matrix Multiplication Library for GPUs - MPMML.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
63 p.
500
$a
Source: Masters Abstracts International, Volume: 80-12.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Rajopadhye, Sanjay.
502
$a
Thesis (M.S.)--Colorado State University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Max-Plus algebra finds its applications in discrete event simulations, dynamic programming, biological sequence comparisons etc. Although there exist highly tuned libraries like CUDA Linear Algebra Subprograms (CuBLAS) [1] for matrix operations, they implement the standard matrix-multiplication (multiply-add) for floating points. We found no standard library for Max-Plus-Matrix-Multiplication (MPMM) on integers. Hence, we developed a highly tuned parallelized MPMM library kernel. We chose GPUs as hardware platform for this work because of their significantly more parallelism and arithmetic functional units as compared to CPUs. We designed this kernel to be portable across three successive Nvidia GPU architectures and it achieves performance in the range 3065 GOPs/S - 3631 GOPs/S on all of these architectures. We closely followed the benchmarking approach described by Volkov et al. [2] when they contributed to cuBLAS. This MPMMkernel can be part of a max-plus algebra library for GPUs and can help speed up Biological Sequence comparison applications like BPMax.
590
$a
School code: 0053.
650
4
$a
Computer Engineering.
$3
1567821
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Computer science.
$3
523869
690
$a
0464
690
$a
0544
690
$a
0984
710
2
$a
Colorado State University.
$b
Electrical and Computer Engineering.
$3
2094888
773
0
$t
Masters Abstracts International
$g
80-12.
790
$a
0053
791
$a
M.S.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13856342
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9385782
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入