語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fusion of Hyperspectral and Depth Da...
~
Goker, Abdullah.
FindBook
Google Book
Amazon
博客來
Fusion of Hyperspectral and Depth Data Using Morphological Image Processing for Pixel-Based Classification.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fusion of Hyperspectral and Depth Data Using Morphological Image Processing for Pixel-Based Classification./
作者:
Goker, Abdullah.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
48 p.
附註:
Source: Masters Abstracts International, Volume: 80-05.
Contained By:
Masters Abstracts International80-05.
標題:
Computer Engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10839060
ISBN:
9780438599710
Fusion of Hyperspectral and Depth Data Using Morphological Image Processing for Pixel-Based Classification.
Goker, Abdullah.
Fusion of Hyperspectral and Depth Data Using Morphological Image Processing for Pixel-Based Classification.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 48 p.
Source: Masters Abstracts International, Volume: 80-05.
Thesis (M.E.E.)--University of Delaware, 2018.
This item must not be sold to any third party vendors.
The availability of multi-sensor data from the same field of view has increased drastically with recent developments in sensor technologies. There are many image processing algorithms to extract different features of objects from sensors, but no single-sensor technology is sufficient to provide dependable classification. Extracting features from multiple sources with morphological operations gives rise to problems like the curse of dimensionality, which degrades the performance of the classifier and considerably increases the computational time. In order to overcome this problem, in this project the features are fused in a lower dimensional space, while as much information as possible about the features of the pixels is preserved. In this way, the classification performance of the given system can be enhanced.
ISBN: 9780438599710Subjects--Topical Terms:
1567821
Computer Engineering.
Fusion of Hyperspectral and Depth Data Using Morphological Image Processing for Pixel-Based Classification.
LDR
:01915nmm a2200337 4500
001
2208985
005
20191025102626.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438599710
035
$a
(MiAaPQ)AAI10839060
035
$a
(MiAaPQ)udel:13412
035
$a
AAI10839060
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Goker, Abdullah.
$3
3436062
245
1 0
$a
Fusion of Hyperspectral and Depth Data Using Morphological Image Processing for Pixel-Based Classification.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
48 p.
500
$a
Source: Masters Abstracts International, Volume: 80-05.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Arce, Gonzalo R.
502
$a
Thesis (M.E.E.)--University of Delaware, 2018.
506
$a
This item must not be sold to any third party vendors.
520
$a
The availability of multi-sensor data from the same field of view has increased drastically with recent developments in sensor technologies. There are many image processing algorithms to extract different features of objects from sensors, but no single-sensor technology is sufficient to provide dependable classification. Extracting features from multiple sources with morphological operations gives rise to problems like the curse of dimensionality, which degrades the performance of the classifier and considerably increases the computational time. In order to overcome this problem, in this project the features are fused in a lower dimensional space, while as much information as possible about the features of the pixels is preserved. In this way, the classification performance of the given system can be enhanced.
590
$a
School code: 0060.
650
4
$a
Computer Engineering.
$3
1567821
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Computer science.
$3
523869
690
$a
0464
690
$a
0544
690
$a
0984
710
2
$a
University of Delaware.
$b
Electrical and Computer Engineering.
$3
3183620
773
0
$t
Masters Abstracts International
$g
80-05.
790
$a
0060
791
$a
M.E.E.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10839060
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9385534
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入