Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Deep Tissue Imaging with Dual Axis O...
~
Zhao, Yang.
Linked to FindBook
Google Book
Amazon
博客來
Deep Tissue Imaging with Dual Axis Optical Coherence Tomography.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Deep Tissue Imaging with Dual Axis Optical Coherence Tomography./
Author:
Zhao, Yang.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
Description:
133 p.
Notes:
Source: Dissertations Abstracts International, Volume: 80-03, Section: B.
Contained By:
Dissertations Abstracts International80-03B.
Subject:
Biomedical engineering. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10837674
ISBN:
9780438377172
Deep Tissue Imaging with Dual Axis Optical Coherence Tomography.
Zhao, Yang.
Deep Tissue Imaging with Dual Axis Optical Coherence Tomography.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 133 p.
Source: Dissertations Abstracts International, Volume: 80-03, Section: B.
Thesis (Ph.D.)--Duke University, 2018.
This item is not available from ProQuest Dissertations & Theses.
Optical imaging techniques generally offer shallow penetration depths due to high scattering in biological tissue. We have recently developed frequency domain multispectral multiple scattering low coherence interferometry (ms2/LCI) for deep tissue imaging. The ms2/LCI system offers unique spatial and angular rejection of out-of-focus photons by utilizing an off-axis interferometric setup. Multiply forward scattered light is preferentially detected for imaging at extended depths. Using tissue-mimicking phantoms that match the full scattering phase function of human dermal tissue, we demonstrate that the ms2/LCI system can provide a signal/noise ratio (SNR) improvement of 15.4 dB over conventional OCT at an imaging depth of 1 mm. In vivo imaging is challenging for the ms2/LCI system due to its slow acquisition speed. To enable fast image acquisition, we have developed dual-axis optical coherence tomography (DA-OCT), which offers a 100-fold speed increase compared to the ms2/LCI system. Two DA-OCT systems were designed and constructed, operating at a center wavelength of 800 nm and 1300 nm respectively. The 1300 nm DA-OCT system offers up to 2 mm depth penetration in skin imaging, which is unprecedented for an OCT system. This significant improvement in penetration depth opens the door for various exciting applications in fields where conventional OCT imaging was limited by poor penetration depths. Deep features revealed by DA-OCT can be confounded by speckle noise. Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of images. A novel frequency compounding speckle reduction technique using the Dual Window (DW) method was recently presented. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss in resolution. The DW speckle reduction method can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing. Finally, functional information was extracted from the raw interferometric data for diagnostic purposes. Depth-resolved spectra were calculated by a time-frequency analysis, which carry valuable localized tissue information. The spectroscopic information was first used to objectively evaluate burn injuries in an in vivo mouse model. Significant spectral differences were observed and correlated with the depth of the injury as determined by histopathology. Later, spectroscopic DA-OCT was used for the assessment of flap viability in an in vivo Macfarlane rat flap model, which exhibited a gradient in tissue perfusion along the length of the flap. These results suggest that the DA-OCT system can be used for objective evaluation of skin injuries at extended depths.
ISBN: 9780438377172Subjects--Topical Terms:
535387
Biomedical engineering.
Deep Tissue Imaging with Dual Axis Optical Coherence Tomography.
LDR
:04127nmm a2200337 4500
001
2207210
005
20190916101802.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438377172
035
$a
(MiAaPQ)AAI10837674
035
$a
(MiAaPQ)duke:14808
035
$a
AAI10837674
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhao, Yang.
$3
964626
245
1 0
$a
Deep Tissue Imaging with Dual Axis Optical Coherence Tomography.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
133 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-03, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Wax, Adam.
502
$a
Thesis (Ph.D.)--Duke University, 2018.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
Optical imaging techniques generally offer shallow penetration depths due to high scattering in biological tissue. We have recently developed frequency domain multispectral multiple scattering low coherence interferometry (ms2/LCI) for deep tissue imaging. The ms2/LCI system offers unique spatial and angular rejection of out-of-focus photons by utilizing an off-axis interferometric setup. Multiply forward scattered light is preferentially detected for imaging at extended depths. Using tissue-mimicking phantoms that match the full scattering phase function of human dermal tissue, we demonstrate that the ms2/LCI system can provide a signal/noise ratio (SNR) improvement of 15.4 dB over conventional OCT at an imaging depth of 1 mm. In vivo imaging is challenging for the ms2/LCI system due to its slow acquisition speed. To enable fast image acquisition, we have developed dual-axis optical coherence tomography (DA-OCT), which offers a 100-fold speed increase compared to the ms2/LCI system. Two DA-OCT systems were designed and constructed, operating at a center wavelength of 800 nm and 1300 nm respectively. The 1300 nm DA-OCT system offers up to 2 mm depth penetration in skin imaging, which is unprecedented for an OCT system. This significant improvement in penetration depth opens the door for various exciting applications in fields where conventional OCT imaging was limited by poor penetration depths. Deep features revealed by DA-OCT can be confounded by speckle noise. Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of images. A novel frequency compounding speckle reduction technique using the Dual Window (DW) method was recently presented. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss in resolution. The DW speckle reduction method can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing. Finally, functional information was extracted from the raw interferometric data for diagnostic purposes. Depth-resolved spectra were calculated by a time-frequency analysis, which carry valuable localized tissue information. The spectroscopic information was first used to objectively evaluate burn injuries in an in vivo mouse model. Significant spectral differences were observed and correlated with the depth of the injury as determined by histopathology. Later, spectroscopic DA-OCT was used for the assessment of flap viability in an in vivo Macfarlane rat flap model, which exhibited a gradient in tissue perfusion along the length of the flap. These results suggest that the DA-OCT system can be used for objective evaluation of skin injuries at extended depths.
590
$a
School code: 0066.
650
4
$a
Biomedical engineering.
$3
535387
690
$a
0541
710
2
$a
Duke University.
$b
Biomedical Engineering.
$3
1036229
773
0
$t
Dissertations Abstracts International
$g
80-03B.
790
$a
0066
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10837674
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9383759
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login