語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-accuracy Motion Estimation for ...
~
Chen, Yi.
FindBook
Google Book
Amazon
博客來
High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors./
作者:
Chen, Yi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
134 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Contained By:
Dissertations Abstracts International80-09B.
標題:
Electrical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13840309
ISBN:
9780438885196
High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors.
Chen, Yi.
High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 134 p.
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
Thesis (Ph.D.)--University of Michigan, 2018.
This item must not be added to any third party search indexes.
With the development of micro-electro-mechanical system (MEMS) technologies, emerging MEMS applications such as in-situ MEMS IMU calibration, medical imaging via endomicroscopy, and feedback control for nano-positioning and laser scanning impose needs for especially accurate measurements of motion using on-chip sensors. Due to their advantages of simple fabrication and integration within system level architectures, capacitive sensors are a primary choice for motion tracking in those applications. However, challenges arise as often the capacitive sensing scheme in those applications is unconventional due to the nature of the application and/or the design and fabrication restrictions imposed, and MEMS sensors are traditionally susceptible to accuracy errors, as from nonlinear sensor behavior, gain and bias drift, feedthrough disturbances, etc. Those challenges prevent traditional sensing and estimation techniques from fulfilling the accuracy requirements of the candidate applications. The goal of this dissertation is to provide a framework for such MEMS devices to achieve high-accuracy motion estimation, and specifically to focus on innovative sensing and estimation techniques that leverage unconventional capacitive sensing schemes to improve estimation accuracy. Several research studies with this specific aim have been conducted, and the methodologies, results and findings are presented in the context of three applications. The general procedure of the study includes proposing and devising the capacitive sensing scheme, deriving a sensor model based on first principles of capacitor configuration and sensing circuit, analyzing the sensor's characteristics in simulation with tuning of key parameters, conducting experimental investigations by constructing testbeds and identifying actuation and sensing models, formulating estimation schemes is to include identified actuation dynamics and sensor models, and validating the estimation schemes and evaluating their performance against ground truth measurements. The studies show that the proposed techniques are valid and effective, as the estimation schemes adopted either fulfill the requirements imposed or improve the overall estimation performance. Highlighted results presented in this dissertation include a scale factor calibration accuracy of 286 ppm for a MEMS gyroscope (Chapter 3), an improvement of 15.1% of angular displacement estimation accuracy by adopting a threshold sensing technique for a scanning micro-mirror (Chapter 4), and a phase shift prediction error of 0.39 degree for a electrostatic micro-scanner using shared electrodes for actuation and sensing (Chapter 5).
ISBN: 9780438885196Subjects--Topical Terms:
649834
Electrical engineering.
High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors.
LDR
:03794nmm a2200325 4500
001
2206311
005
20190829083240.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438885196
035
$a
(MiAaPQ)AAI13840309
035
$a
(MiAaPQ)umichrackham:002109
035
$a
AAI13840309
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chen, Yi.
$3
1277337
245
1 0
$a
High-accuracy Motion Estimation for MEMS Devices with Capacitive Sensors.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
134 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-09, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Oldham, Kenn Richard.
502
$a
Thesis (Ph.D.)--University of Michigan, 2018.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
With the development of micro-electro-mechanical system (MEMS) technologies, emerging MEMS applications such as in-situ MEMS IMU calibration, medical imaging via endomicroscopy, and feedback control for nano-positioning and laser scanning impose needs for especially accurate measurements of motion using on-chip sensors. Due to their advantages of simple fabrication and integration within system level architectures, capacitive sensors are a primary choice for motion tracking in those applications. However, challenges arise as often the capacitive sensing scheme in those applications is unconventional due to the nature of the application and/or the design and fabrication restrictions imposed, and MEMS sensors are traditionally susceptible to accuracy errors, as from nonlinear sensor behavior, gain and bias drift, feedthrough disturbances, etc. Those challenges prevent traditional sensing and estimation techniques from fulfilling the accuracy requirements of the candidate applications. The goal of this dissertation is to provide a framework for such MEMS devices to achieve high-accuracy motion estimation, and specifically to focus on innovative sensing and estimation techniques that leverage unconventional capacitive sensing schemes to improve estimation accuracy. Several research studies with this specific aim have been conducted, and the methodologies, results and findings are presented in the context of three applications. The general procedure of the study includes proposing and devising the capacitive sensing scheme, deriving a sensor model based on first principles of capacitor configuration and sensing circuit, analyzing the sensor's characteristics in simulation with tuning of key parameters, conducting experimental investigations by constructing testbeds and identifying actuation and sensing models, formulating estimation schemes is to include identified actuation dynamics and sensor models, and validating the estimation schemes and evaluating their performance against ground truth measurements. The studies show that the proposed techniques are valid and effective, as the estimation schemes adopted either fulfill the requirements imposed or improve the overall estimation performance. Highlighted results presented in this dissertation include a scale factor calibration accuracy of 286 ppm for a MEMS gyroscope (Chapter 3), an improvement of 15.1% of angular displacement estimation accuracy by adopting a threshold sensing technique for a scanning micro-mirror (Chapter 4), and a phase shift prediction error of 0.39 degree for a electrostatic micro-scanner using shared electrodes for actuation and sensing (Chapter 5).
590
$a
School code: 0127.
650
4
$a
Electrical engineering.
$3
649834
690
$a
0544
710
2
$a
University of Michigan.
$b
Mechanical Engineering.
$3
2104815
773
0
$t
Dissertations Abstracts International
$g
80-09B.
790
$a
0127
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13840309
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9382860
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入