語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
3D Face Reconstruction and Emotion A...
~
Jin, Hai.
FindBook
Google Book
Amazon
博客來
3D Face Reconstruction and Emotion Analytics with Part-based Morphable Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
3D Face Reconstruction and Emotion Analytics with Part-based Morphable Models./
作者:
Jin, Hai.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
122 p.
附註:
Source: Dissertations Abstracts International, Volume: 79-10, Section: B.
Contained By:
Dissertations Abstracts International79-10B.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10745907
ISBN:
9780355827040
3D Face Reconstruction and Emotion Analytics with Part-based Morphable Models.
Jin, Hai.
3D Face Reconstruction and Emotion Analytics with Part-based Morphable Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 122 p.
Source: Dissertations Abstracts International, Volume: 79-10, Section: B.
Thesis (Ph.D.)--Wayne State University, 2018.
This item must not be added to any third party search indexes.
3D face reconstruction and facial expression analytics using 3D facial data are new and hot research topics in computer graphics and computer vision. In this proposal, we first review the background knowledge for emotion analytics using 3D morphable face model, including geometry feature-based methods, statistic model-based methods and more advanced deep learning-bade methods. Then, we introduce a novel 3D face modeling and reconstruction solution that robustly and accurately acquires 3D face models from a couple of images captured by a single smartphone camera. Two selfie photos of a subject taken from the front and side are used to guide our Non-Negative Matrix Factorization (NMF) induced part-based face model to iteratively reconstruct an initial 3D face of the subject. Then, an iterative detail updating method is applied to the initial generated 3D face to reconstruct facial details through optimizing lighting parameters and local depths. Our iterative 3D face reconstruction method permits fully automatic registration of a part-based face representation to the acquired face data and the detailed 2D/3D features to build a high-quality 3D face model. The NMF part-based face representation learned from a 3D face database facilitates effective global and adaptive local detail data fitting alternatively. Our system is flexible and it allows users to conduct the capture in any uncontrolled environment. We demonstrate the capability of our method by allowing users to capture and reconstruct their 3D faces by themselves. Based on the 3D face model reconstruction, we can analyze the facial expression and the related emotion in 3D space. We present a novel approach to analyze the facial expressions from images and a quantitative information visualization scheme for exploring this type of visual data. From the reconstructed result using NMF part-based morphable 3D face model, basis parameters and a displacement map are extracted as features for facial emotion analysis and visualization. Based upon the features, two Support Vector Regressions (SVRs) are trained to determine the fuzzy Valence-Arousal (VA) values to quantify the emotions. The continuously changing emotion status can be intuitively analyzed by visualizing the VA values in VA-space. Our emotion analysis and visualization system, based on 3D NMF morphable face model, detects expressions robustly from various head poses, face sizes and lighting conditions, and is fully automatic to compute the VA values from images or a sequence of video with various facial expressions. To evaluate our novel method, we test our system on publicly available databases and evaluate the emotion analysis and visualization results. We also apply our method to quantifying emotion changes during motivational interviews. These experiments and applications demonstrate effectiveness and accuracy of our method. In order to improve the expression recognition accuracy, we present a facial expression recognition approach with 3D Mesh Convolutional Neural Network (3DMCNN) and a visual analytics guided 3DMCNN design and optimization scheme. The geometric properties of the surface is computed using the 3D face model of a subject with facial expressions. Instead of using regular Convolutional Neural Network (CNN) to learn intensities of the facial images, we convolve the geometric properties on the surface of the 3D model using 3DMCNN. We design a geodesic distance-based convolution method to overcome the difficulties raised from the irregular sampling of the face surface mesh. We further present an interactive visual analytics for the purpose of designing and modifying the networks to analyze the learned features and cluster similar nodes in 3DMCNN. By removing low activity nodes in the network, the performance of the network is greatly improved. We compare our method with the regular CNN-based method by interactively visualizing each layer of the networks and analyze the effectiveness of our method by studying representative cases. Testing on public datasets, our method achieves a higher recognition accuracy than traditional image-based CNN and other 3D CNNs. The presented framework, including 3DMCNN and interactive visual analytics of the CNN, can be extended to other applications.
ISBN: 9780355827040Subjects--Topical Terms:
523869
Computer science.
3D Face Reconstruction and Emotion Analytics with Part-based Morphable Models.
LDR
:05399nmm a2200325 4500
001
2205520
005
20190828120305.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780355827040
035
$a
(MiAaPQ)AAI10745907
035
$a
(MiAaPQ)wayne:13579
035
$a
AAI10745907
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jin, Hai.
$3
740873
245
1 0
$a
3D Face Reconstruction and Emotion Analytics with Part-based Morphable Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
122 p.
500
$a
Source: Dissertations Abstracts International, Volume: 79-10, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Hua, Jing.
502
$a
Thesis (Ph.D.)--Wayne State University, 2018.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
3D face reconstruction and facial expression analytics using 3D facial data are new and hot research topics in computer graphics and computer vision. In this proposal, we first review the background knowledge for emotion analytics using 3D morphable face model, including geometry feature-based methods, statistic model-based methods and more advanced deep learning-bade methods. Then, we introduce a novel 3D face modeling and reconstruction solution that robustly and accurately acquires 3D face models from a couple of images captured by a single smartphone camera. Two selfie photos of a subject taken from the front and side are used to guide our Non-Negative Matrix Factorization (NMF) induced part-based face model to iteratively reconstruct an initial 3D face of the subject. Then, an iterative detail updating method is applied to the initial generated 3D face to reconstruct facial details through optimizing lighting parameters and local depths. Our iterative 3D face reconstruction method permits fully automatic registration of a part-based face representation to the acquired face data and the detailed 2D/3D features to build a high-quality 3D face model. The NMF part-based face representation learned from a 3D face database facilitates effective global and adaptive local detail data fitting alternatively. Our system is flexible and it allows users to conduct the capture in any uncontrolled environment. We demonstrate the capability of our method by allowing users to capture and reconstruct their 3D faces by themselves. Based on the 3D face model reconstruction, we can analyze the facial expression and the related emotion in 3D space. We present a novel approach to analyze the facial expressions from images and a quantitative information visualization scheme for exploring this type of visual data. From the reconstructed result using NMF part-based morphable 3D face model, basis parameters and a displacement map are extracted as features for facial emotion analysis and visualization. Based upon the features, two Support Vector Regressions (SVRs) are trained to determine the fuzzy Valence-Arousal (VA) values to quantify the emotions. The continuously changing emotion status can be intuitively analyzed by visualizing the VA values in VA-space. Our emotion analysis and visualization system, based on 3D NMF morphable face model, detects expressions robustly from various head poses, face sizes and lighting conditions, and is fully automatic to compute the VA values from images or a sequence of video with various facial expressions. To evaluate our novel method, we test our system on publicly available databases and evaluate the emotion analysis and visualization results. We also apply our method to quantifying emotion changes during motivational interviews. These experiments and applications demonstrate effectiveness and accuracy of our method. In order to improve the expression recognition accuracy, we present a facial expression recognition approach with 3D Mesh Convolutional Neural Network (3DMCNN) and a visual analytics guided 3DMCNN design and optimization scheme. The geometric properties of the surface is computed using the 3D face model of a subject with facial expressions. Instead of using regular Convolutional Neural Network (CNN) to learn intensities of the facial images, we convolve the geometric properties on the surface of the 3D model using 3DMCNN. We design a geodesic distance-based convolution method to overcome the difficulties raised from the irregular sampling of the face surface mesh. We further present an interactive visual analytics for the purpose of designing and modifying the networks to analyze the learned features and cluster similar nodes in 3DMCNN. By removing low activity nodes in the network, the performance of the network is greatly improved. We compare our method with the regular CNN-based method by interactively visualizing each layer of the networks and analyze the effectiveness of our method by studying representative cases. Testing on public datasets, our method achieves a higher recognition accuracy than traditional image-based CNN and other 3D CNNs. The presented framework, including 3DMCNN and interactive visual analytics of the CNN, can be extended to other applications.
590
$a
School code: 0254.
650
4
$a
Computer science.
$3
523869
690
$a
0984
710
2
$a
Wayne State University.
$b
Computer Science.
$3
1030863
773
0
$t
Dissertations Abstracts International
$g
79-10B.
790
$a
0254
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10745907
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9382069
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入