語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Wave Functions of Integrable Models.
~
Zhongtao Mei.
FindBook
Google Book
Amazon
博客來
Wave Functions of Integrable Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Wave Functions of Integrable Models./
作者:
Zhongtao Mei.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
112 p.
附註:
Source: Dissertation Abstracts International, Volume: 80-04(E), Section: B.
Contained By:
Dissertation Abstracts International80-04B(E).
標題:
Theoretical physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=11011064
ISBN:
9780438649217
Wave Functions of Integrable Models.
Zhongtao Mei.
Wave Functions of Integrable Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 112 p.
Source: Dissertation Abstracts International, Volume: 80-04(E), Section: B.
Thesis (Ph.D.)--University of Cincinnati, 2018.
This thesis centers on Bethe wave functions for one-dimensional lattice and field theories of quantum systems. The Bethe ansatz is a well established theoretical tool in the crosscutting research field of integrable systems. However, most of the work in the literature focuses on the eigenenergies, and very limited results are known about the eigenstates. We present here two pieces of work to extend and deepen our understanding about Bethe wave functions.
ISBN: 9780438649217Subjects--Topical Terms:
2144760
Theoretical physics.
Wave Functions of Integrable Models.
LDR
:02640nmm a2200313 4500
001
2202792
005
20190513114841.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438649217
035
$a
(MiAaPQ)AAI11011064
035
$a
(MiAaPQ)OhioLINK:ucin1530880774625297
035
$a
AAI11011064
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhongtao Mei.
$3
3429565
245
1 0
$a
Wave Functions of Integrable Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
112 p.
500
$a
Source: Dissertation Abstracts International, Volume: 80-04(E), Section: B.
500
$a
Adviser: Carlos J. Bolech.
502
$a
Thesis (Ph.D.)--University of Cincinnati, 2018.
520
$a
This thesis centers on Bethe wave functions for one-dimensional lattice and field theories of quantum systems. The Bethe ansatz is a well established theoretical tool in the crosscutting research field of integrable systems. However, most of the work in the literature focuses on the eigenenergies, and very limited results are known about the eigenstates. We present here two pieces of work to extend and deepen our understanding about Bethe wave functions.
520
$a
In one work, we recast the Bethe states as exact matrix product states for the Heisenberg XXZ spin-1/2 chain and the Lieb-Liniger model with open boundary conditions, and find that the matrices do not depend on the spatial coordinate despite the open boundaries. Based on this result, we suggest generic ways of exploiting translational invariance both for finite size and in the thermodynamic limit. Our work makes the Bethe eigenstates more accessible and informs the choice of ansatz for tensor-network algorithms of both integrable and nonintegrable systems in one dimension. This achievement contributes in this way not only to the basic theory of integrable models but it will also influence the community that works using matrix product states and other tensor networks.
520
$a
In another work, we use the physical interpretation of rapidities in integrable models to calculate the asymptotic expansion velocity of interacting atomic gases. Which is accessible in sudden expansion experiments as those done routinely these days using opticallytrapped cold atomic gases. Through our research, the calculations of the asymptotic forms of observables of integrable models in quantum quench problems become more clear and theoretically accessible.
590
$a
School code: 0045.
650
4
$a
Theoretical physics.
$3
2144760
690
$a
0753
710
2
$a
University of Cincinnati.
$b
Physics.
$3
2102081
773
0
$t
Dissertation Abstracts International
$g
80-04B(E).
790
$a
0045
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=11011064
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9379341
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入