語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Inference in Heterogeneous Networks.
~
Li, Yuan.
FindBook
Google Book
Amazon
博客來
Inference in Heterogeneous Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Inference in Heterogeneous Networks./
作者:
Li, Yuan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
97 p.
附註:
Source: Dissertation Abstracts International, Volume: 80-03(E), Section: B.
Contained By:
Dissertation Abstracts International80-03B(E).
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10825217
ISBN:
9780438550728
Inference in Heterogeneous Networks.
Li, Yuan.
Inference in Heterogeneous Networks.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 97 p.
Source: Dissertation Abstracts International, Volume: 80-03(E), Section: B.
Thesis (Ph.D.)--Northwestern University, 2018.
Last two decades have seen a surge of interests in approaches that leverage network structure in machine learning models. For many networks, not only the connections of the network but also the network attributes, such as node attributes and dyadic attributes, are observed. This heterogeneity in networks raises new challenges for the inference problem in networks.
ISBN: 9780438550728Subjects--Topical Terms:
517247
Statistics.
Inference in Heterogeneous Networks.
LDR
:02440nmm a2200301 4500
001
2202152
005
20190513114557.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438550728
035
$a
(MiAaPQ)AAI10825217
035
$a
(MiAaPQ)northwestern:14208
035
$a
AAI10825217
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Li, Yuan.
$3
1682511
245
1 0
$a
Inference in Heterogeneous Networks.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
97 p.
500
$a
Source: Dissertation Abstracts International, Volume: 80-03(E), Section: B.
500
$a
Adviser: Wenxin Jiang.
502
$a
Thesis (Ph.D.)--Northwestern University, 2018.
520
$a
Last two decades have seen a surge of interests in approaches that leverage network structure in machine learning models. For many networks, not only the connections of the network but also the network attributes, such as node attributes and dyadic attributes, are observed. This heterogeneity in networks raises new challenges for the inference problem in networks.
520
$a
This dissertation discusses how to handle the heterogeneous networks for different ma- chine learning applications, namely community detection, node classification, and node representation learning. For community detection in network with node attributes, we introduce a mathematical approach that combines topology information and nodes at- tributes. The algorithm explores the correlation between node attributes and community assignment, and uses the diversity of dyadic attributes induced by different types of nodes to improve performance as well. We also study node classification problem in a transaction network, where rich information of node and edge is available, within Markov random field framework. We present a novel algorithm that automatically learns node prior and edge potential in the Markov random field, hence results in better classification. Finally, we generalize deepwalk to incorporate the dyadic attributes in network representation learning by biasing the random walk sampling procedure in deepwalk. The algorithm learns the sampling weights in a data driven manner and constructs a proper proximity measure based on the dyadic attributes.
590
$a
School code: 0163.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
Northwestern University.
$b
Statistics.
$3
1673808
773
0
$t
Dissertation Abstracts International
$g
80-03B(E).
790
$a
0163
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10825217
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9378701
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入