語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Sensing Human Sentiment via Social M...
~
Wang, Yilin.
FindBook
Google Book
Amazon
博客來
Sensing Human Sentiment via Social Media Images: Methodologies and Applications.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Sensing Human Sentiment via Social Media Images: Methodologies and Applications./
作者:
Wang, Yilin.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2018,
面頁冊數:
120 p.
附註:
Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
Contained By:
Dissertation Abstracts International80-01B(E).
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10846436
ISBN:
9780438291843
Sensing Human Sentiment via Social Media Images: Methodologies and Applications.
Wang, Yilin.
Sensing Human Sentiment via Social Media Images: Methodologies and Applications.
- Ann Arbor : ProQuest Dissertations & Theses, 2018 - 120 p.
Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
Thesis (Ph.D.)--Arizona State University, 2018.
Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form of different activities such as social network, business network, text sharing, photo sharing, blogging, etc. With the increasing popularity of social media, it has accumulated a large amount of data which enables understanding the human behavior possible. Compared with traditional survey based methods, the analysis of social media provides us a golden opportunity to understand individuals at scale and in turn allows us to design better services that can tailor to individuals' needs. From this perspective, we can view social media as sensors, which provides online signals from a virtual world that has no geographical boundaries for the real world individual's activity.
ISBN: 9780438291843Subjects--Topical Terms:
523869
Computer science.
Sensing Human Sentiment via Social Media Images: Methodologies and Applications.
LDR
:04086nmm a2200325 4500
001
2201534
005
20190429104417.5
008
201008s2018 ||||||||||||||||| ||eng d
020
$a
9780438291843
035
$a
(MiAaPQ)AAI10846436
035
$a
(MiAaPQ)asu:18246
035
$a
AAI10846436
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Wang, Yilin.
$3
2102952
245
1 0
$a
Sensing Human Sentiment via Social Media Images: Methodologies and Applications.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2018
300
$a
120 p.
500
$a
Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500
$a
Adviser: Baoxin Li.
502
$a
Thesis (Ph.D.)--Arizona State University, 2018.
520
$a
Social media refers computer-based technology that allows the sharing of information and building the virtual networks and communities. With the development of internet based services and applications, user can engage with social media via computer and smart mobile devices. In recent years, social media has taken the form of different activities such as social network, business network, text sharing, photo sharing, blogging, etc. With the increasing popularity of social media, it has accumulated a large amount of data which enables understanding the human behavior possible. Compared with traditional survey based methods, the analysis of social media provides us a golden opportunity to understand individuals at scale and in turn allows us to design better services that can tailor to individuals' needs. From this perspective, we can view social media as sensors, which provides online signals from a virtual world that has no geographical boundaries for the real world individual's activity.
520
$a
One of the key features for social media is social, where social media users actively interact to each via generating content and expressing the opinions, such as post and comment in Facebook. As a result, sentiment analysis, which refers a computational model to identify, extract or characterize subjective information expressed in a given piece of text, has successfully employs user signals and brings many real world applications in different domains such as e-commerce, politics, marketing, etc. The goal of sentiment analysis is to classify a user's attitude towards various topics into positive, negative or neutral categories based on textual data in social media. However, recently, there is an increasing number of people start to use photos to express their daily life on social media platforms like Flickr and Instagram. Therefore, analyzing the sentiment from visual data is poise to have great improvement for user understanding.
520
$a
In this dissertation, I study the problem of understanding human sentiments from large scale collection of social images based on both image features and contextual social network features. We show that neither visual features nor the textual features are by themselves sufficient for accurate sentiment prediction. Therefore, we provide a way of using both of them, and formulate sentiment prediction problem in two scenarios: supervised and unsupervised. We first show that the proposed framework has flexibility to incorporate multiple modalities of information and has the capability to learn from heterogeneous features jointly with sufficient training data. Secondly, we observe that negative sentiment may related to human mental health issues. Based on this observation, we aim to understand the negative social media posts, especially the post related to depression e.g., self-harm content. Our analysis, the first of its kind, reveals a number of important findings. Thirdly, we extend the proposed sentiment prediction task to a general multi-label visual recognition task to demonstrate the methodology flexibility behind our sentiment analysis model.
590
$a
School code: 0010.
650
4
$a
Computer science.
$3
523869
650
4
$a
Mass communication.
$3
2144804
690
$a
0984
690
$a
0708
710
2
$a
Arizona State University.
$b
Computer Science.
$3
1676136
773
0
$t
Dissertation Abstracts International
$g
80-01B(E).
790
$a
0010
791
$a
Ph.D.
792
$a
2018
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10846436
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9378083
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入