語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applying Mine Tailing and Fly Ash as...
~
Feng, Qingming.
FindBook
Google Book
Amazon
博客來
Applying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Development.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Development./
作者:
Feng, Qingming.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2015,
面頁冊數:
139 p.
附註:
Source: Dissertations Abstracts International, Volume: 77-07, Section: B.
Contained By:
Dissertations Abstracts International77-07B.
標題:
Mining engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3741026
ISBN:
9781339332024
Applying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Development.
Feng, Qingming.
Applying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Development.
- Ann Arbor : ProQuest Dissertations & Theses, 2015 - 139 p.
Source: Dissertations Abstracts International, Volume: 77-07, Section: B.
Thesis (Ph.D.)--The University of Arizona, 2015.
This item is not available from ProQuest Dissertations & Theses.
Geopolymerization has been considered as a new technology to replace the ordinary Portland cement in construction industry. It provides an option to manage the industry waste and byproducts like fly ash, mine tailings. At the same time, the CO2 emissions can be reduced about 80% compared to that of ordinary Portland cement. The present research includes three main parts. First part is applying mine tailings as construction materials using geopolymerization method. The study is focused on efficiently activating mine tailings, reducing alkali consumption, decreasing curing time and improving compressive strength. We investigate the activation temperature effects, the impacts of additives and effects of forming pressures. The results show that a 40 MPa unconfined compressive strength (UCS) can be achieved with the geopolymerization samples after mine tailings are activated by sodium hydroxide at 170°C for 1 hour with the addition of calcium hydroxide and alkali dissolved aluminum oxide, further compressed with a 10 MPa forming pressure and finally cured at 90°C for 3 days. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques including scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy are used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization specimens. The stress-strain behavior was also characterized. The results shows that the mechanical behavior is similar with that of concrete and the dynamic modulus is 22 GPa, which is comparable with that of concrete. The Young's modulus of geopolymer product was also calculated and the value is in the range of 2.9 to 9.3 GPa. The findings of the present work provide a novel method for the geopolymerization of mine tailings as construction materials. Second section is applying fly ash as a high strength water-resistant construction material. Through the present investigation, a procedure has been studied. The experiment results indicate that the concentration of NaOH, water content, and curing condition can significantly affect the mechanical property of geopolymer matrix. At the same time, the chemical composition, especially the Si/Al ratio and calcium content, is also an important factor during geopolymerization. XRD results show that the amorphous feature can be observed for both high and low calcium fly ash. It is the key of the success of geopolymerizaton due to its high reactivity. XRD, FTIR and SEM tests were performed to study how experiment conditions and the properties of fly ash affect geopolymerization. The obtained compressive strength of the geopolymerization product can reach above 100 MPa. The stress-strain behavior was also characterized. The results shows that the dynamic modulus is 36.5 GPa. The product obtained from the present work shows very high water resistance without losing any compressive strength even after a one month soaking time. Third part is applying the mixture of class C fly ash and mine tailings as construction materials. Through the present investigation, a protocol has been set up. The experiment results of the present work also help set up the working conditions such as activation temperature and time, the concentration of NaOH, the addition of Ca(OH)2, forming pressure, mine tailing to class C fly ash weight ratio, curing temperature and curing time. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques such as SEM/EDX, X-ray diffraction and FTIR spectroscopy were used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization composite. The obtained compressive strength of the geopolymerization product can reach above 60 MPa. The stress-strain behavior of the geopolymer matrix of the mixture of mine tailing and fly ash were also characterized and the results show that the mechanical behavior is similar to that of concrete with a 24 GPa dynamic modulus. The Young's modulus of geopolymer product was also calculated and the value is in the range of 4.0 to 13.5 GPa. The findings of the present work provide a novel method for the geopolymerization of the mixture of mine tailings and class C fly ash as construction materials, such as bricks for construction and road pavement.
ISBN: 9781339332024Subjects--Topical Terms:
788403
Mining engineering.
Applying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Development.
LDR
:05633nmm a2200337 4500
001
2197607
005
20190923134352.5
008
200811s2015 ||||||||||||||||| ||eng d
020
$a
9781339332024
035
$a
(MiAaPQ)AAI3741026
035
$a
(MiAaPQ)arizona:14288
035
$a
AAI3741026
035
$a
2197607
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Feng, Qingming.
$3
3422438
245
1 0
$a
Applying Mine Tailing and Fly Ash as Construction Materials for a Sustainable Development.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2015
300
$a
139 p.
500
$a
Source: Dissertations Abstracts International, Volume: 77-07, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Zhang, Jinhong.
502
$a
Thesis (Ph.D.)--The University of Arizona, 2015.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be sold to any third party vendors.
520
$a
Geopolymerization has been considered as a new technology to replace the ordinary Portland cement in construction industry. It provides an option to manage the industry waste and byproducts like fly ash, mine tailings. At the same time, the CO2 emissions can be reduced about 80% compared to that of ordinary Portland cement. The present research includes three main parts. First part is applying mine tailings as construction materials using geopolymerization method. The study is focused on efficiently activating mine tailings, reducing alkali consumption, decreasing curing time and improving compressive strength. We investigate the activation temperature effects, the impacts of additives and effects of forming pressures. The results show that a 40 MPa unconfined compressive strength (UCS) can be achieved with the geopolymerization samples after mine tailings are activated by sodium hydroxide at 170°C for 1 hour with the addition of calcium hydroxide and alkali dissolved aluminum oxide, further compressed with a 10 MPa forming pressure and finally cured at 90°C for 3 days. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques including scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy are used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization specimens. The stress-strain behavior was also characterized. The results shows that the mechanical behavior is similar with that of concrete and the dynamic modulus is 22 GPa, which is comparable with that of concrete. The Young's modulus of geopolymer product was also calculated and the value is in the range of 2.9 to 9.3 GPa. The findings of the present work provide a novel method for the geopolymerization of mine tailings as construction materials. Second section is applying fly ash as a high strength water-resistant construction material. Through the present investigation, a procedure has been studied. The experiment results indicate that the concentration of NaOH, water content, and curing condition can significantly affect the mechanical property of geopolymer matrix. At the same time, the chemical composition, especially the Si/Al ratio and calcium content, is also an important factor during geopolymerization. XRD results show that the amorphous feature can be observed for both high and low calcium fly ash. It is the key of the success of geopolymerizaton due to its high reactivity. XRD, FTIR and SEM tests were performed to study how experiment conditions and the properties of fly ash affect geopolymerization. The obtained compressive strength of the geopolymerization product can reach above 100 MPa. The stress-strain behavior was also characterized. The results shows that the dynamic modulus is 36.5 GPa. The product obtained from the present work shows very high water resistance without losing any compressive strength even after a one month soaking time. Third part is applying the mixture of class C fly ash and mine tailings as construction materials. Through the present investigation, a protocol has been set up. The experiment results of the present work also help set up the working conditions such as activation temperature and time, the concentration of NaOH, the addition of Ca(OH)2, forming pressure, mine tailing to class C fly ash weight ratio, curing temperature and curing time. To elucidate the mechanism for the contribution of additives to geopolymerization, microscopic and spectroscopic techniques such as SEM/EDX, X-ray diffraction and FTIR spectroscopy were used to investigate the micro/nanostructure and the elemental and phase composition of geopolymerization composite. The obtained compressive strength of the geopolymerization product can reach above 60 MPa. The stress-strain behavior of the geopolymer matrix of the mixture of mine tailing and fly ash were also characterized and the results show that the mechanical behavior is similar to that of concrete with a 24 GPa dynamic modulus. The Young's modulus of geopolymer product was also calculated and the value is in the range of 4.0 to 13.5 GPa. The findings of the present work provide a novel method for the geopolymerization of the mixture of mine tailings and class C fly ash as construction materials, such as bricks for construction and road pavement.
590
$a
School code: 0009.
650
4
$a
Mining engineering.
$3
788403
690
$a
0551
710
2
$a
The University of Arizona.
$b
Mining Geological and Geophysical Engineering.
$3
3422439
773
0
$t
Dissertations Abstracts International
$g
77-07B.
790
$a
0009
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3741026
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9375866
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入