Building machine learning and deep l...
Bisong, Ekaba.

Linked to FindBook      Google Book      Amazon      博客來     
  • Building machine learning and deep learning models on Google Cloud Platform = a comprehensive guide for beginners /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Building machine learning and deep learning models on Google Cloud Platform/ by Ekaba Bisong.
    Reminder of title: a comprehensive guide for beginners /
    Author: Bisong, Ekaba.
    Published: Berkeley, CA :Apress : : 2019.,
    Description: xxix, 709 p. :ill. (some col.), digital ;24 cm.
    [NT 15003449]: Part 1: Getting Started with Google Cloud Platform -- Chapter 1: What Is Cloud Computing? -- Chapter 2: An Overview of Google Cloud Platform Services -- Chapter 3: The Google Cloud SDK and Web CLI -- Chapter 4: Google Cloud Storage (GCS) -- Chapter 5: Google Compute Engine (GCE) -- Chapter 6: JupyterLab Notebooks -- Chapter 7: Google Colaboratory -- Part 2: Programming Foundations for Data Science -- Chapter 8: What is Data Science? -- Chapter 9: Python -- Chapter 10: Numpy -- Chapter 11: Pandas -- Chapter 12: Matplotlib and Seaborn -- Part 3: Introducing Machine Learning -- Chapter 13: What Is Machine Learning? -- Chapter 14: Principles of Learning -- Chapter 15: Batch vs. Online Learning -- Chapter 16: Optimization for Machine Learning: Gradient Descent -- Chapter 17: Learning Algorithms -- Part 4: Machine Learning in Practice -- Chapter 18: Introduction to Scikit-learn -- Chapter 19: Linear Regression -- Chapter 20: Logistic Regression -- Chapter 21: Regularization for Linear Models -- Chapter 22: Support Vector Machines -- Chapter 23: Ensemble Methods -- Chapter 24: More Supervised Machine Learning Techniques with Scikit-learn -- Chapter 25: Clustering -- Chapter 26: Principal Components Analysis (PCA) -- Part 5: Introducing Deep Learning -- Chapter 27: What is Deep Learning? -- Chapter 28: Neural Network Foundations -- Chapter 29: Training a Neural Network -- Part 6: Deep Learning in Practice -- Chapter 30: TensorFlow 2.0 and Keras -- Chapter 31: The Multilayer Perceptron (MLP) -- Chapter 32: Other Considerations for Training the Network -- Chapter 33: More on Optimization Techniques -- Chapter 34: Regularization for Deep Learning -- Chapter 35: Convolutional Neural Networks (CNN) -- Chapter 36: Recurrent Neural Networks (RNN) -- Chapter 37: Autoencoders -- Part 7: Advanced Analytics/ Machine Learning on Google Cloud Platform -- Chapter 38: Google BigQuery -- Chapter 39: Google Cloud Dataprep -- Chapter 40: Google Cloud Dataflow -- Chapter 41: Google Cloud Machine Learning Engine (Cloud MLE) -- Chapter 42: Google AutoML: Cloud Vision -- Chapter 43: Google AutoML: Cloud Natural Language Processing -- Chapter 44: Model to Predict the Critical Temperature of Superconductors -- Part 8: Productionalizing Machine Learning Solutions on GCP -- Chapter 45: Containers and Google Kubernetes Engine -- Chapter 46: Kubeflow and Kubeflow Pipelines -- Chapter 47: Deploying an End-to-End Machine Learning Solution on Kubeflow Pipelines.
    Contained By: Springer eBooks
    Subject: Machine learning. -
    Online resource: https://doi.org/10.1007/978-1-4842-4470-8
    ISBN: 9781484244708
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9375685 電子資源 11.線上閱覽_V 電子書 EB Q325.5 .B576 2019 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login