語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The partial regularity theory of Caf...
~
Ozanski, Wojciech S.
FindBook
Google Book
Amazon
博客來
The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness/ by Wojciech S. Ozanski.
作者:
Ozanski, Wojciech S.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
vi, 138 p. :ill., digital ;24 cm.
內容註:
1 Introduction -- 2 The Caffarelli-Kohn-Nirenberg theorem -- 3 Point blow-up -- 4. Blow-up on a Cantor set.
Contained By:
Springer eBooks
標題:
Navier-Stokes equations. -
電子資源:
https://doi.org/10.1007/978-3-030-26661-5
ISBN:
9783030266615
The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness
Ozanski, Wojciech S.
The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness
[electronic resource] /by Wojciech S. Ozanski. - Cham :Springer International Publishing :2019. - vi, 138 p. :ill., digital ;24 cm. - Advances in mathematical fluid mechanics. - Advances in mathematical fluid mechanics..
1 Introduction -- 2 The Caffarelli-Kohn-Nirenberg theorem -- 3 Point blow-up -- 4. Blow-up on a Cantor set.
This monograph focuses on the partial regularity theorem, as developed by Caffarelli, Kohn, and Nirenberg (CKN), and offers a proof of the upper bound on the Hausdorff dimension of the singular set of weak solutions of the Navier-Stokes inequality, while also providing a clear and insightful presentation of Scheffer's constructions showing their bound cannot be improved. A short, complete, and self-contained proof of CKN is presented in the second chapter, allowing the remainder of the book to be fully dedicated to a topic of central importance: the sharpness result of Scheffer. Chapters three and four contain a highly readable proof of this result, featuring new improvements as well. Researchers in mathematical fluid mechanics, as well as those working in partial differential equations more generally, will find this monograph invaluable.
ISBN: 9783030266615
Standard No.: 10.1007/978-3-030-26661-5doiSubjects--Topical Terms:
628091
Navier-Stokes equations.
LC Class. No.: QA374 / .O368 2019
Dewey Class. No.: 518.64
The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness
LDR
:02015nmm a2200337 a 4500
001
2193337
003
DE-He213
005
20191223142109.0
006
m d
007
cr nn 008maaau
008
200514s2019 gw s 0 eng d
020
$a
9783030266615
$q
(electronic bk.)
020
$a
9783030266608
$q
(paper)
024
7
$a
10.1007/978-3-030-26661-5
$2
doi
035
$a
978-3-030-26661-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA374
$b
.O368 2019
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
518.64
$2
23
090
$a
QA374
$b
.O99 2019
100
1
$a
Ozanski, Wojciech S.
$3
3414448
245
1 4
$a
The partial regularity theory of Caffarelli, Kohn, and Nirenberg and its sharpness
$h
[electronic resource] /
$c
by Wojciech S. Ozanski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhauser,
$c
2019.
300
$a
vi, 138 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in mathematical fluid mechanics
505
0
$a
1 Introduction -- 2 The Caffarelli-Kohn-Nirenberg theorem -- 3 Point blow-up -- 4. Blow-up on a Cantor set.
520
$a
This monograph focuses on the partial regularity theorem, as developed by Caffarelli, Kohn, and Nirenberg (CKN), and offers a proof of the upper bound on the Hausdorff dimension of the singular set of weak solutions of the Navier-Stokes inequality, while also providing a clear and insightful presentation of Scheffer's constructions showing their bound cannot be improved. A short, complete, and self-contained proof of CKN is presented in the second chapter, allowing the remainder of the book to be fully dedicated to a topic of central importance: the sharpness result of Scheffer. Chapters three and four contain a highly readable proof of this result, featuring new improvements as well. Researchers in mathematical fluid mechanics, as well as those working in partial differential equations more generally, will find this monograph invaluable.
650
0
$a
Navier-Stokes equations.
$3
628091
650
1 4
$a
Partial Differential Equations.
$3
890899
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
1566152
650
2 4
$a
Fluid- and Aerodynamics.
$3
1066670
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Advances in mathematical fluid mechanics.
$3
2057138
856
4 0
$u
https://doi.org/10.1007/978-3-030-26661-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9375627
電子資源
11.線上閱覽_V
電子書
EB QA374 .O368 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入