Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Convex and stochastic optimization
~
Bonnans, J. Frederic.
Linked to FindBook
Google Book
Amazon
博客來
Convex and stochastic optimization
Record Type:
Electronic resources : Monograph/item
Title/Author:
Convex and stochastic optimization/ by J. Frederic Bonnans.
Author:
Bonnans, J. Frederic.
Published:
Cham :Springer International Publishing : : 2019.,
Description:
xiii, 311 p. :ill., digital ;24 cm.
[NT 15003449]:
1 A convex optimization toolbox -- 2 Semidefinite and semiinfinite programming -- 3 An integration toolbox -- 4 Risk measures -- 5 Sampling and optimizing -- 6 Dynamic stochastic optimization -- 7 Markov decision processes -- 8 Algorithms -- 9 Generalized convexity and transportation theory -- References -- Index.
Contained By:
Springer eBooks
Subject:
Mathematical optimization. -
Online resource:
https://doi.org/10.1007/978-3-030-14977-2
ISBN:
9783030149772
Convex and stochastic optimization
Bonnans, J. Frederic.
Convex and stochastic optimization
[electronic resource] /by J. Frederic Bonnans. - Cham :Springer International Publishing :2019. - xiii, 311 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
1 A convex optimization toolbox -- 2 Semidefinite and semiinfinite programming -- 3 An integration toolbox -- 4 Risk measures -- 5 Sampling and optimizing -- 6 Dynamic stochastic optimization -- 7 Markov decision processes -- 8 Algorithms -- 9 Generalized convexity and transportation theory -- References -- Index.
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
ISBN: 9783030149772
Standard No.: 10.1007/978-3-030-14977-2doiSubjects--Topical Terms:
517763
Mathematical optimization.
LC Class. No.: QA402.5 / .B66 2019
Dewey Class. No.: 519.6
Convex and stochastic optimization
LDR
:02039nmm a2200337 a 4500
001
2190603
003
DE-He213
005
20190424022443.0
006
m d
007
cr nn 008maaau
008
200501s2019 gw s 0 eng d
020
$a
9783030149772
$q
(electronic bk.)
020
$a
9783030149765
$q
(paper)
024
7
$a
10.1007/978-3-030-14977-2
$2
doi
035
$a
978-3-030-14977-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.B66 2019
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.B716 2019
100
1
$a
Bonnans, J. Frederic.
$3
3409240
245
1 0
$a
Convex and stochastic optimization
$h
[electronic resource] /
$c
by J. Frederic Bonnans.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 311 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
1 A convex optimization toolbox -- 2 Semidefinite and semiinfinite programming -- 3 An integration toolbox -- 4 Risk measures -- 5 Sampling and optimizing -- 6 Dynamic stochastic optimization -- 7 Markov decision processes -- 8 Algorithms -- 9 Generalized convexity and transportation theory -- References -- Index.
520
$a
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
650
0
$a
Mathematical optimization.
$3
517763
650
0
$a
Stochastic processes.
$3
520663
650
0
$a
Convex functions.
$3
544201
650
1 4
$a
Optimization.
$3
891104
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
812115
856
4 0
$u
https://doi.org/10.1007/978-3-030-14977-2
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9373370
電子資源
11.線上閱覽_V
電子書
EB QA402.5 .B66 2019
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login