語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Categorical homotopy theory
~
Riehl, Emily.
FindBook
Google Book
Amazon
博客來
Categorical homotopy theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Categorical homotopy theory/ Emily Riehl.
作者:
Riehl, Emily.
出版者:
Cambridge :Cambridge University Press, : 2014.,
面頁冊數:
xviii, 352 p. :ill., digital ;24 cm.
標題:
Homotopy theory. -
電子資源:
https://doi.org/10.1017/CBO9781107261457
ISBN:
9781107261457
Categorical homotopy theory
Riehl, Emily.
Categorical homotopy theory
[electronic resource] /Emily Riehl. - Cambridge :Cambridge University Press,2014. - xviii, 352 p. :ill., digital ;24 cm. - New mathematical monographs ;24. - New mathematical monographs ;24..
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
ISBN: 9781107261457Subjects--Topical Terms:
604501
Homotopy theory.
LC Class. No.: QA612.7 / .R45 2014
Dewey Class. No.: 514.24
Categorical homotopy theory
LDR
:01817nmm a2200253 a 4500
001
2186210
003
UkCbUP
005
20151005020624.0
006
m d
007
cr nn 008maaau
008
200117s2014 enk o 1 0 eng d
020
$a
9781107261457
$q
(electronic bk.)
020
$a
9781107048454
$q
(paper)
035
$a
CR9781107261457
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA612.7
$b
.R45 2014
082
0 4
$a
514.24
$2
23
090
$a
QA612.7
$b
.R555 2014
100
1
$a
Riehl, Emily.
$3
3205535
245
1 0
$a
Categorical homotopy theory
$h
[electronic resource] /
$c
Emily Riehl.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2014.
300
$a
xviii, 352 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
New mathematical monographs ;
$v
24
520
$a
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
650
0
$a
Homotopy theory.
$3
604501
650
0
$a
Algebra, Homological.
$3
663850
830
0
$a
New mathematical monographs ;
$v
24.
$3
3400101
856
4 0
$u
https://doi.org/10.1017/CBO9781107261457
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9372821
電子資源
11.線上閱覽_V
電子書
EB QA612.7 .R45 2014
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入