語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Essentials of time series for financ...
~
Guidolin, Massimo,
FindBook
Google Book
Amazon
博客來
Essentials of time series for financial applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Essentials of time series for financial applications // Massimo Guidolin, Manuela Pedio.
作者:
Guidolin, Massimo,
其他作者:
Pedio, Manuela,
面頁冊數:
1 online resource
附註:
Includes index.
內容註:
Intro; Title page; Table of Contents; Copyright; List of Figures; List of Tables; Preface; Chapter 1. Linear Regression Model; Abstract; 1.1 Inference in Linear Regression Models; 1.2 Testing for Violations of the Linear Regression Framework; 1.3 Specifying the Regressors; 1.4 Issues With Heteroskedasticity and Autoc14orrelation of the Errors; 1.5 The Interpretation of Regression Results; References; Appendix 1.A; Appendix 1.B Principal Component Analysis; Chapter 2. Autoregressive Moving Average (ARMA) Models and Their Practical Applications; Abstract.
內容註:
2.1 Essential Concepts in Time Series Analysis2.2 Moving Average and Autoregressive Processes; 2.3 Selection and Estimation of AR, MA, and ARMA Models; 2.4 Forecasting ARMA Processes; References; Appendix 2.A; Chapter 3. Vector Autoregressive Moving Average (VARMA) Models; Abstract; 3.1 Foundations of Multivariate Time Series Analysis; 3.2 Introduction to Vector Autoregressive Analysis; 3.3 Structural Analysis With Vector Autoregressive Models; 3.4 Vector Moving Average and Vector Autoregressive Moving Average Models; References; Chapter 4. Unit Roots and Cointegration; Abstract.
內容註:
4.1 Defining Unit Root Processes4.2 The Spurious Regression Problem; 4.3 Unit Root Tests; 4.4 Cointegration and Error-Correction Models; References; Chapter 5. Single-Factor Conditionally Heteroskedastic Models, ARCH and GARCH; Abstract; 5.1 Stylized Facts and Preliminaries; 5.2 Simple Univariate Parametric Models; 5.3 Advanced Univariate Volatility Modeling; 5.4 Testing for ARCH; 5.5 Forecasting With GARCH Models; 5.6 Estimation of and Inference on GARCH Models; References; Appendix 5.A Nonparametric Kernel Density Estimation; Chapter 6. Multivariate GARCH and Conditional Correlation Models.
內容註:
Abstract6.1 Introduction and Preliminaries; 6.2 Simple Models of Covariance Prediction; 6.3 Full, Multivariate GARCH Models; 6.4 Constant and Dynamic Conditional Correlation Models; 6.5 Factor GARCH Models; 6.6 Inference and Model Specification; References; Chapter 7. Multifactor Heteroskedastic Models, Stoc60hastic Volatility; Abstract; 7.1 A Primer on the Kalman Filter; 7.2 Simple Stoc63hastic Volatility Models and their Estimation Using the Kalman Filter; 7.3 Extended, Second-Generation Stoc64hastic Volatility Models; 7.4 GARCH versus Stoc65hastic Volatility: Which One?; References.
內容註:
Chapter 8. Models With Breaks, Recurrent Regime Switching, and NonlinearitiesAbstract; 8.1 A Primer on the Key Features and Classification of Statistical Model of Instability; 8.2 Detecting and Exploiting Structural Change in Linear Models; 8.3 Threshold and Smooth Transition Regime Switching Models; References; Chapter 9. Markov Switching Models; Abstract; 9.1 Definitions and Classifications; 9.2 Understanding Markov Switching Dynamics Through Simulations; 9.3 Markov Switching Regressions; 9.4 Markov Chain Processes and Their Properties.
標題:
Time-series analysis. -
電子資源:
https://www.sciencedirect.com/science/book/9780128134092
ISBN:
9780128134108
Essentials of time series for financial applications /
Guidolin, Massimo,
Essentials of time series for financial applications /
Massimo Guidolin, Manuela Pedio. - 1 online resource
Includes index.
Intro; Title page; Table of Contents; Copyright; List of Figures; List of Tables; Preface; Chapter 1. Linear Regression Model; Abstract; 1.1 Inference in Linear Regression Models; 1.2 Testing for Violations of the Linear Regression Framework; 1.3 Specifying the Regressors; 1.4 Issues With Heteroskedasticity and Autoc14orrelation of the Errors; 1.5 The Interpretation of Regression Results; References; Appendix 1.A; Appendix 1.B Principal Component Analysis; Chapter 2. Autoregressive Moving Average (ARMA) Models and Their Practical Applications; Abstract.
ISBN: 9780128134108Subjects--Topical Terms:
532530
Time-series analysis.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: QA280 / .G8 2018eb
Dewey Class. No.: 519.5/5
Essentials of time series for financial applications /
LDR
:03944cmm a2200337 i 4500
001
2185743
006
m o d
007
cr cnu---unuuu
008
200116s2018 enk o 001 0 eng d
020
$a
9780128134108
$q
(electronic bk.)
020
$a
0128134100
$q
(electronic bk.)
020
$a
9780128134092
020
$a
0128134097
035
$a
(OCoLC)1038716460
$z
(OCoLC)1039304581
$z
(OCoLC)1039793448
035
$a
els69900587
040
$a
N$T
$b
eng
$e
rda
$e
pn
$c
N$T
$d
OPELS
$d
N$T
$d
EBLCP
$d
YDX
$d
DKU
$d
SNM
$d
MERER
$d
OCLCF
$d
OCLCQ
041
0
$a
eng
050
4
$a
QA280
$b
.G8 2018eb
082
0 4
$a
519.5/5
$2
23
100
1
$a
Guidolin, Massimo,
$e
author.
$3
3399187
245
1 0
$a
Essentials of time series for financial applications /
$c
Massimo Guidolin, Manuela Pedio.
264
1
$a
London, United Kingdom :
$b
Academic Press, an imprint of Elsevier,
$c
2018.
300
$a
1 online resource
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Includes index.
505
0
$a
Intro; Title page; Table of Contents; Copyright; List of Figures; List of Tables; Preface; Chapter 1. Linear Regression Model; Abstract; 1.1 Inference in Linear Regression Models; 1.2 Testing for Violations of the Linear Regression Framework; 1.3 Specifying the Regressors; 1.4 Issues With Heteroskedasticity and Autoc14orrelation of the Errors; 1.5 The Interpretation of Regression Results; References; Appendix 1.A; Appendix 1.B Principal Component Analysis; Chapter 2. Autoregressive Moving Average (ARMA) Models and Their Practical Applications; Abstract.
505
8
$a
2.1 Essential Concepts in Time Series Analysis2.2 Moving Average and Autoregressive Processes; 2.3 Selection and Estimation of AR, MA, and ARMA Models; 2.4 Forecasting ARMA Processes; References; Appendix 2.A; Chapter 3. Vector Autoregressive Moving Average (VARMA) Models; Abstract; 3.1 Foundations of Multivariate Time Series Analysis; 3.2 Introduction to Vector Autoregressive Analysis; 3.3 Structural Analysis With Vector Autoregressive Models; 3.4 Vector Moving Average and Vector Autoregressive Moving Average Models; References; Chapter 4. Unit Roots and Cointegration; Abstract.
505
8
$a
4.1 Defining Unit Root Processes4.2 The Spurious Regression Problem; 4.3 Unit Root Tests; 4.4 Cointegration and Error-Correction Models; References; Chapter 5. Single-Factor Conditionally Heteroskedastic Models, ARCH and GARCH; Abstract; 5.1 Stylized Facts and Preliminaries; 5.2 Simple Univariate Parametric Models; 5.3 Advanced Univariate Volatility Modeling; 5.4 Testing for ARCH; 5.5 Forecasting With GARCH Models; 5.6 Estimation of and Inference on GARCH Models; References; Appendix 5.A Nonparametric Kernel Density Estimation; Chapter 6. Multivariate GARCH and Conditional Correlation Models.
505
8
$a
Abstract6.1 Introduction and Preliminaries; 6.2 Simple Models of Covariance Prediction; 6.3 Full, Multivariate GARCH Models; 6.4 Constant and Dynamic Conditional Correlation Models; 6.5 Factor GARCH Models; 6.6 Inference and Model Specification; References; Chapter 7. Multifactor Heteroskedastic Models, Stoc60hastic Volatility; Abstract; 7.1 A Primer on the Kalman Filter; 7.2 Simple Stoc63hastic Volatility Models and their Estimation Using the Kalman Filter; 7.3 Extended, Second-Generation Stoc64hastic Volatility Models; 7.4 GARCH versus Stoc65hastic Volatility: Which One?; References.
505
8
$a
Chapter 8. Models With Breaks, Recurrent Regime Switching, and NonlinearitiesAbstract; 8.1 A Primer on the Key Features and Classification of Statistical Model of Instability; 8.2 Detecting and Exploiting Structural Change in Linear Models; 8.3 Threshold and Smooth Transition Regime Switching Models; References; Chapter 9. Markov Switching Models; Abstract; 9.1 Definitions and Classifications; 9.2 Understanding Markov Switching Dynamics Through Simulations; 9.3 Markov Switching Regressions; 9.4 Markov Chain Processes and Their Properties.
650
0
$a
Time-series analysis.
$3
532530
650
0
$a
Econometrics.
$3
542934
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Pedio, Manuela,
$e
author.
$3
3399188
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128134092
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9372379
電子資源
11.線上閱覽_V
電子書
EB QA280 .G8 2018eb
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入