語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fundamentals of ocean renewable ener...
~
Neill, Simon P.
FindBook
Google Book
Amazon
博客來
Fundamentals of ocean renewable energy : = generating electricity from the sea /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fundamentals of ocean renewable energy :/ Simon P. Neill and M. Reza Hashemi.
其他題名:
generating electricity from the sea /
作者:
Neill, Simon P.
其他作者:
Hashemi, M. Reza.
面頁冊數:
1 online resource.
內容註:
Front Cover; Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea; Copyright; Quotes; Contents; Preface; Chapter 1: Introduction; 1.1 The Global Energy Mix; 1.2 Climate Change and Sustainability; Fossil Fuel Reserves; 1.3 Electrical Grid systems; Predictable; Reliable; Dispatchable; 1.3.1 Supply vs. Demand; 1.3.2 Grid Inertia; 1.3.3 Interconnectors and Grid Storage; 1.3.4 Levelized Cost of Energy; 1.4 Ocean Renewable Energy; 1.4.1 The Nature of Ocean Energy; 1.4.2 Lessons From the Wind Energy Industry; 1.4.3 Roadmaps and Progress; 1.5 Energy and Power.
內容註:
Units of Energy and PowerCapacity Factor; References; Further Reading; Chapter 2: Review of Hydrodynamic Theory; 2.1 Vector and Index Notation; 2.1.1 Einstein Convention; 2.1.2 More Examples of Indicial Notation; 2.2 Reynolds Transport Theorem; 2.3 Navier-Stokes Equations; 2.3.1 Euler Equations; 2.3.2 Viscous and Turbulent Flows; 2.3.3 Shallow Water Equations; Leibnitz's Rule; 2.4 Hydrodynamic Equations in 1D Steady Case; References; Chapter 3: Tidal Energy; 3.1 Tide Generating Forces; 3.2 Progressive Waves; 3.3 Cotidal Charts; 3.4 Standing Waves; 3.5 Resonance; 3.6 Coriolis.
內容註:
3.7 Kelvin Waves3.8 Tidal Analysis and Prediction; 3.9 Compound Tides; 3.10 Overtides and Tidal Asymmetry; 3.11 Characterizing Tides at a Site; 3.11.1 Velocity Profile; 3.11.2 Power Density; 3.11.3 Tidal Ellipses; 3.12 Tidal-Stream Devices; 3.12.1 Horizontal Axis Turbines; 3.12.2 Vertical Axis Turbines; 3.12.3 Oscillating Hydrofoils; 3.12.4 Venturi Effect Devices; 3.12.5 Tidal Kites; 3.12.6 Arrays; 3.13 Basic Hydrodynamics of HorizontalAxis Turbines; 3.13.1 Power Coefficient and the Betz Limit; 3.14 Tidal Range: Lagoons and Barrages; References; Further Reading.
內容註:
Chapter 4: Offshore Wind4.1 Introduction; 4.2 An Introduction to Offshore Wind Turbines; 4.2.1 Aerodynamics of Wind Turbines; Betz Limit; Power Curve; 4.3 Assessment of Wind Energy at a Site; 4.3.1 Atmospheric Boundary Layer; 4.3.2 Temporal Distribution: Probability Density Function of Wind Speed; 4.3.3 Block Island Wind Farm; Calculation of Power Output and Capacity Factor; 4.4 Marine Spatial Planning; References; Chapter 5: Wave Energy; 5.1 Wave Processes; 5.1.1 Linear Wave Theory; 5.1.2 Relationship Between Wave Celerity, Wave Number, and Water Depth: The Dispersion Equation.
內容註:
5.1.3 Wave Energy and Wave Power5.1.4 Irregular Waves; Wave Power for Irregular Waves; 5.1.5 Nonlinear Waves; Wave Breaking; Nonlinear Dispersion Equation; 5.2 Wave Transformation Due to Shoaling Water; 5.2.1 Wave Shoaling; 5.2.2 Wave Refraction; 5.3 Diffraction; 5.4 Wave Energy Converters; 5.4.1 Technology Types; Attenuator; Surface Point Absorber; Oscillating Wave Surge Converter; Oscillating Water Column; Overtopping Devices; 5.4.2 Comparison Between WEC Technologies; 5.4.3 Basic Motions of WECs; 5.4.4 Theory of Heaving Point Absorbers; Mass-Spring-Damper.
標題:
Renewable energy sources - Research. -
電子資源:
https://www.sciencedirect.com/science/book/9780128104484
ISBN:
9780128104491
Fundamentals of ocean renewable energy : = generating electricity from the sea /
Neill, Simon P.
Fundamentals of ocean renewable energy :
generating electricity from the sea /Simon P. Neill and M. Reza Hashemi. - First edition. - 1 online resource. - E-business solutions.
Includes bibliographical references and index.
Front Cover; Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea; Copyright; Quotes; Contents; Preface; Chapter 1: Introduction; 1.1 The Global Energy Mix; 1.2 Climate Change and Sustainability; Fossil Fuel Reserves; 1.3 Electrical Grid systems; Predictable; Reliable; Dispatchable; 1.3.1 Supply vs. Demand; 1.3.2 Grid Inertia; 1.3.3 Interconnectors and Grid Storage; 1.3.4 Levelized Cost of Energy; 1.4 Ocean Renewable Energy; 1.4.1 The Nature of Ocean Energy; 1.4.2 Lessons From the Wind Energy Industry; 1.4.3 Roadmaps and Progress; 1.5 Energy and Power.
Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems. Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials.
ISBN: 9780128104491Subjects--Topical Terms:
2147566
Renewable energy sources
--Research.Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: TJ808.6
Dewey Class. No.: 621.042
Fundamentals of ocean renewable energy : = generating electricity from the sea /
LDR
:05258nmm a2200373 i 4500
001
2181977
006
m o d
007
cr cnu---unuuu
008
191128s2018 enk ob 001 0 eng d
020
$a
9780128104491
$q
(electronic bk.)
020
$a
012810449X
$q
(electronic bk.)
020
$a
9780128104484
020
$a
0128104481
035
$a
(OCoLC)1041853290
$z
(OCoLC)1042084416
$z
(OCoLC)1082522889
035
$a
els19100101
040
$a
N$T
$b
eng
$e
rda
$e
pn
$c
N$T
$d
N$T
$d
EBLCP
$d
OPELS
$d
YDX
$d
OCLCF
$d
OTZ
$d
NLE
$d
INT
$d
MERUC
$d
UKMGB
$d
OCLCQ
$d
U3W
$d
LVT
$d
OCLCQ
$d
UMI
$d
G3B
$d
D6H
$d
STF
$d
KNOVL
$d
ABC
$d
C6I
041
0
$a
eng
050
4
$a
TJ808.6
082
0 4
$a
621.042
$2
23
100
1
$a
Neill, Simon P.
$3
3389813
245
1 0
$a
Fundamentals of ocean renewable energy :
$b
generating electricity from the sea /
$c
Simon P. Neill and M. Reza Hashemi.
250
$a
First edition.
264
1
$a
London :
$b
Academic Press,
$c
2018.
300
$a
1 online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
0
$a
E-business solutions
504
$a
Includes bibliographical references and index.
505
0
$a
Front Cover; Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea; Copyright; Quotes; Contents; Preface; Chapter 1: Introduction; 1.1 The Global Energy Mix; 1.2 Climate Change and Sustainability; Fossil Fuel Reserves; 1.3 Electrical Grid systems; Predictable; Reliable; Dispatchable; 1.3.1 Supply vs. Demand; 1.3.2 Grid Inertia; 1.3.3 Interconnectors and Grid Storage; 1.3.4 Levelized Cost of Energy; 1.4 Ocean Renewable Energy; 1.4.1 The Nature of Ocean Energy; 1.4.2 Lessons From the Wind Energy Industry; 1.4.3 Roadmaps and Progress; 1.5 Energy and Power.
505
8
$a
Units of Energy and PowerCapacity Factor; References; Further Reading; Chapter 2: Review of Hydrodynamic Theory; 2.1 Vector and Index Notation; 2.1.1 Einstein Convention; 2.1.2 More Examples of Indicial Notation; 2.2 Reynolds Transport Theorem; 2.3 Navier-Stokes Equations; 2.3.1 Euler Equations; 2.3.2 Viscous and Turbulent Flows; 2.3.3 Shallow Water Equations; Leibnitz's Rule; 2.4 Hydrodynamic Equations in 1D Steady Case; References; Chapter 3: Tidal Energy; 3.1 Tide Generating Forces; 3.2 Progressive Waves; 3.3 Cotidal Charts; 3.4 Standing Waves; 3.5 Resonance; 3.6 Coriolis.
505
8
$a
3.7 Kelvin Waves3.8 Tidal Analysis and Prediction; 3.9 Compound Tides; 3.10 Overtides and Tidal Asymmetry; 3.11 Characterizing Tides at a Site; 3.11.1 Velocity Profile; 3.11.2 Power Density; 3.11.3 Tidal Ellipses; 3.12 Tidal-Stream Devices; 3.12.1 Horizontal Axis Turbines; 3.12.2 Vertical Axis Turbines; 3.12.3 Oscillating Hydrofoils; 3.12.4 Venturi Effect Devices; 3.12.5 Tidal Kites; 3.12.6 Arrays; 3.13 Basic Hydrodynamics of HorizontalAxis Turbines; 3.13.1 Power Coefficient and the Betz Limit; 3.14 Tidal Range: Lagoons and Barrages; References; Further Reading.
505
8
$a
Chapter 4: Offshore Wind4.1 Introduction; 4.2 An Introduction to Offshore Wind Turbines; 4.2.1 Aerodynamics of Wind Turbines; Betz Limit; Power Curve; 4.3 Assessment of Wind Energy at a Site; 4.3.1 Atmospheric Boundary Layer; 4.3.2 Temporal Distribution: Probability Density Function of Wind Speed; 4.3.3 Block Island Wind Farm; Calculation of Power Output and Capacity Factor; 4.4 Marine Spatial Planning; References; Chapter 5: Wave Energy; 5.1 Wave Processes; 5.1.1 Linear Wave Theory; 5.1.2 Relationship Between Wave Celerity, Wave Number, and Water Depth: The Dispersion Equation.
505
8
$a
5.1.3 Wave Energy and Wave Power5.1.4 Irregular Waves; Wave Power for Irregular Waves; 5.1.5 Nonlinear Waves; Wave Breaking; Nonlinear Dispersion Equation; 5.2 Wave Transformation Due to Shoaling Water; 5.2.1 Wave Shoaling; 5.2.2 Wave Refraction; 5.3 Diffraction; 5.4 Wave Energy Converters; 5.4.1 Technology Types; Attenuator; Surface Point Absorber; Oscillating Wave Surge Converter; Oscillating Water Column; Overtopping Devices; 5.4.2 Comparison Between WEC Technologies; 5.4.3 Basic Motions of WECs; 5.4.4 Theory of Heaving Point Absorbers; Mass-Spring-Damper.
520
$a
Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems. Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials.
650
0
$a
Renewable energy sources
$x
Research.
$3
2147566
650
0
$a
Electric power production.
$3
736276
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Hashemi, M. Reza.
$3
3389814
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128104484
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9370861
電子資源
11.線上閱覽_V
電子書
EB TJ808.6
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入