語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fundamentals of clinical data science
~
Kubben, Pieter.
FindBook
Google Book
Amazon
博客來
Fundamentals of clinical data science
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fundamentals of clinical data science/ edited by Pieter Kubben, Michel Dumontier, Andre Dekker.
其他作者:
Kubben, Pieter.
出版者:
Cham :Springer International Publishing : : 2019.,
面頁冊數:
viii, 219 p. :ill., digital ;24 cm.
內容註:
Data sources -- Data at scale -- Standards in healthcare data -- Using FAIR data / data stewardship -- Privacy / deidentification -- Preparing your data -- Creating a predictive model -- Diving deeper into models -- Validation and Evaluation of reported models -- Clinical decision support systems -- Mobile app development -- Operational excellence -- Value Based Healthcare (Regulatory concerns)
Contained By:
Springer eBooks
標題:
Medical informatics. -
電子資源:
https://doi.org/10.1007/978-3-319-99713-1
ISBN:
9783319997131
Fundamentals of clinical data science
Fundamentals of clinical data science
[electronic resource] /edited by Pieter Kubben, Michel Dumontier, Andre Dekker. - Cham :Springer International Publishing :2019. - viii, 219 p. :ill., digital ;24 cm.
Data sources -- Data at scale -- Standards in healthcare data -- Using FAIR data / data stewardship -- Privacy / deidentification -- Preparing your data -- Creating a predictive model -- Diving deeper into models -- Validation and Evaluation of reported models -- Clinical decision support systems -- Mobile app development -- Operational excellence -- Value Based Healthcare (Regulatory concerns)
Open access.
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book's promise is "no math, no code"and will explain the topics in a style that is optimized for a healthcare audience.
ISBN: 9783319997131
Standard No.: 10.1007/978-3-319-99713-1doiSubjects--Topical Terms:
661258
Medical informatics.
LC Class. No.: R858 / .F863 2019
Dewey Class. No.: 610.285
Fundamentals of clinical data science
LDR
:02447nmm a2200349 a 4500
001
2179014
003
DE-He213
005
20190715153540.0
006
m d
007
cr nn 008maaau
008
191122s2019 gw s 0 eng d
020
$a
9783319997131
$q
(electronic bk.)
020
$a
9783319997124
$q
(paper)
024
7
$a
10.1007/978-3-319-99713-1
$2
doi
035
$a
978-3-319-99713-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
R858
$b
.F863 2019
072
7
$a
MBG
$2
bicssc
072
7
$a
MED000000
$2
bisacsh
072
7
$a
MBG
$2
thema
072
7
$a
UB
$2
thema
082
0 4
$a
610.285
$2
23
090
$a
R858
$b
.F981 2019
245
0 0
$a
Fundamentals of clinical data science
$h
[electronic resource] /
$c
edited by Pieter Kubben, Michel Dumontier, Andre Dekker.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
viii, 219 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Data sources -- Data at scale -- Standards in healthcare data -- Using FAIR data / data stewardship -- Privacy / deidentification -- Preparing your data -- Creating a predictive model -- Diving deeper into models -- Validation and Evaluation of reported models -- Clinical decision support systems -- Mobile app development -- Operational excellence -- Value Based Healthcare (Regulatory concerns)
506
$a
Open access.
520
$a
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book's promise is "no math, no code"and will explain the topics in a style that is optimized for a healthcare audience.
650
0
$a
Medical informatics.
$3
661258
650
1 4
$a
Health Informatics.
$3
892928
650
2 4
$a
Computational Biology/Bioinformatics.
$3
898313
700
1
$a
Kubben, Pieter.
$3
3383746
700
1
$a
Dumontier, Michel.
$3
3383747
700
1
$a
Dekker, Andre.
$3
3383748
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-319-99713-1
950
$a
Medicine (Springer-11650)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9368871
電子資源
11.線上閱覽_V
電子書
EB R858 .F863 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入