Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Practical text analytics = maximizin...
~
Anandarajan, Murugan.
Linked to FindBook
Google Book
Amazon
博客來
Practical text analytics = maximizing the value of text data /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Practical text analytics/ by Murugan Anandarajan, Chelsey Hill, Thomas Nolan.
Reminder of title:
maximizing the value of text data /
Author:
Anandarajan, Murugan.
other author:
Hill, Chelsey.
Published:
Cham :Springer International Publishing : : 2019.,
Description:
xxviii, 285 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 1. Introduction to Text Analytics -- Chapter 2. Fundamentals of Content Analysis -- Chapter 3. Text Analytics Roadmap -- Chapter 4. Text Pre-Processing -- Chapter 5. Term-Document Representation -- Chapter 6. Semantic Space Representation and Latent Semantic Analysis -- Chapter 7. Cluster Analysis: Modeling Groups in Text -- Chapter 8. Probabilistic Topic Models -- Chapter 9. Classification Analysis: Machine Learning Applied to Text -- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models -- Chapter 11. Storytelling Using Text Data -- Chapter 12. Visualizing Results -- Chapter 13. Sentiment Analysis of Movie Reviews using R -- Chapter 14. Latent Semantic Analysis (LSA) in Python -- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner -- Chapter 16. SAS Visual Text Analytics.
Contained By:
Springer eBooks
Subject:
Data mining. -
Online resource:
https://doi.org/10.1007/978-3-319-95663-3
ISBN:
9783319956633
Practical text analytics = maximizing the value of text data /
Anandarajan, Murugan.
Practical text analytics
maximizing the value of text data /[electronic resource] :by Murugan Anandarajan, Chelsey Hill, Thomas Nolan. - Cham :Springer International Publishing :2019. - xxviii, 285 p. :ill., digital ;24 cm. - Advances in analytics and data science,v.22522-0233 ;. - Advances in analytics and data science ;v.2..
Chapter 1. Introduction to Text Analytics -- Chapter 2. Fundamentals of Content Analysis -- Chapter 3. Text Analytics Roadmap -- Chapter 4. Text Pre-Processing -- Chapter 5. Term-Document Representation -- Chapter 6. Semantic Space Representation and Latent Semantic Analysis -- Chapter 7. Cluster Analysis: Modeling Groups in Text -- Chapter 8. Probabilistic Topic Models -- Chapter 9. Classification Analysis: Machine Learning Applied to Text -- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models -- Chapter 11. Storytelling Using Text Data -- Chapter 12. Visualizing Results -- Chapter 13. Sentiment Analysis of Movie Reviews using R -- Chapter 14. Latent Semantic Analysis (LSA) in Python -- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner -- Chapter 16. SAS Visual Text Analytics.
This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.
ISBN: 9783319956633
Standard No.: 10.1007/978-3-319-95663-3doiSubjects--Topical Terms:
562972
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Practical text analytics = maximizing the value of text data /
LDR
:03071nmm a2200337 a 4500
001
2177441
003
DE-He213
005
20190528131440.0
006
m d
007
cr nn 008maaau
008
191122s2019 gw s 0 eng d
020
$a
9783319956633
$q
(electronic bk.)
020
$a
9783319956626
$q
(paper)
024
7
$a
10.1007/978-3-319-95663-3
$2
doi
035
$a
978-3-319-95663-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
KJQ
$2
bicssc
072
7
$a
BUS070030
$2
bisacsh
072
7
$a
KJQ
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
A533 2019
100
1
$a
Anandarajan, Murugan.
$3
1085189
245
1 0
$a
Practical text analytics
$h
[electronic resource] :
$b
maximizing the value of text data /
$c
by Murugan Anandarajan, Chelsey Hill, Thomas Nolan.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xxviii, 285 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in analytics and data science,
$x
2522-0233 ;
$v
v.2
505
0
$a
Chapter 1. Introduction to Text Analytics -- Chapter 2. Fundamentals of Content Analysis -- Chapter 3. Text Analytics Roadmap -- Chapter 4. Text Pre-Processing -- Chapter 5. Term-Document Representation -- Chapter 6. Semantic Space Representation and Latent Semantic Analysis -- Chapter 7. Cluster Analysis: Modeling Groups in Text -- Chapter 8. Probabilistic Topic Models -- Chapter 9. Classification Analysis: Machine Learning Applied to Text -- Chapter 10. Modeling Text Sentiment: Learning and Lexicon Models -- Chapter 11. Storytelling Using Text Data -- Chapter 12. Visualizing Results -- Chapter 13. Sentiment Analysis of Movie Reviews using R -- Chapter 14. Latent Semantic Analysis (LSA) in Python -- Chapter 15. Learning-Based Sentiment Analysis using RapidMiner -- Chapter 16. SAS Visual Text Analytics.
520
$a
This book introduces text analytics as a valuable method for deriving insights from text data. Unlike other text analytics publications, Practical Text Analytics: Maximizing the Value of Text Data makes technical concepts accessible to those without extensive experience in the field. Using text analytics, organizations can derive insights from content such as emails, documents, and social media. Practical Text Analytics is divided into five parts. The first part introduces text analytics, discusses the relationship with content analysis, and provides a general overview of text mining methodology. In the second part, the authors discuss the practice of text analytics, including data preparation and the overall planning process. The third part covers text analytics techniques such as cluster analysis, topic models, and machine learning. In the fourth part of the book, readers learn about techniques used to communicate insights from text analysis, including data storytelling. The final part of Practical Text Analytics offers examples of the application of software programs for text analytics, enabling readers to mine their own text data to uncover information.
650
0
$a
Data mining.
$3
562972
650
0
$a
Text processing (Computer science)
$3
532552
650
0
$a
Text files.
$3
3380551
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Big Data/Analytics.
$3
2186785
650
2 4
$a
Business Information Systems.
$3
892640
650
2 4
$a
Statistics for Business/Economics/Mathematical Finance/Insurance.
$3
891081
700
1
$a
Hill, Chelsey.
$3
3380548
700
1
$a
Nolan, Thomas.
$3
3380549
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Advances in analytics and data science ;
$v
v.2.
$3
3380550
856
4 0
$u
https://doi.org/10.1007/978-3-319-95663-3
950
$a
Business and Management (Springer-41169)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9367302
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login