語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Pedestrian Detection Based on Deep L...
~
Chen, Li.
FindBook
Google Book
Amazon
博客來
Pedestrian Detection Based on Deep Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Pedestrian Detection Based on Deep Learning./
作者:
Chen, Li.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
55 p.
附註:
Source: Masters Abstracts International, Volume: 57-04.
Contained By:
Masters Abstracts International57-04(E).
標題:
Electrical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10622123
ISBN:
9780355472189
Pedestrian Detection Based on Deep Learning.
Chen, Li.
Pedestrian Detection Based on Deep Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 55 p.
Source: Masters Abstracts International, Volume: 57-04.
Thesis (M.S.)--University of California, Riverside, 2017.
In general, researchers use hand-crafted methods or combine with the deep learning to solve the problem of Pedestrian Detection. In this paper, this problem can be implemented in the purely convolution neural network. Region Proposal Network, proposed by the algorithm for objects detection could be modified and applied on the pedestrian detection. After getting feature maps from the pretrained model, feed them into the new model and train by using Tensorflow as the deep learning framework, we can get the predicted bounding boxes that contain the pedestrians. This method is efficient and can reach the accuracy around 80 percent.
ISBN: 9780355472189Subjects--Topical Terms:
649834
Electrical engineering.
Pedestrian Detection Based on Deep Learning.
LDR
:01501nmm a2200289 4500
001
2165082
005
20181129115238.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355472189
035
$a
(MiAaPQ)AAI10622123
035
$a
(MiAaPQ)ucr:13061
035
$a
AAI10622123
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chen, Li.
$3
1018741
245
1 0
$a
Pedestrian Detection Based on Deep Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
55 p.
500
$a
Source: Masters Abstracts International, Volume: 57-04.
500
$a
Adviser: Qi Zhu.
502
$a
Thesis (M.S.)--University of California, Riverside, 2017.
520
$a
In general, researchers use hand-crafted methods or combine with the deep learning to solve the problem of Pedestrian Detection. In this paper, this problem can be implemented in the purely convolution neural network. Region Proposal Network, proposed by the algorithm for objects detection could be modified and applied on the pedestrian detection. After getting feature maps from the pretrained model, feed them into the new model and train by using Tensorflow as the deep learning framework, we can get the predicted bounding boxes that contain the pedestrians. This method is efficient and can reach the accuracy around 80 percent.
590
$a
School code: 0032.
650
4
$a
Electrical engineering.
$3
649834
690
$a
0544
710
2
$a
University of California, Riverside.
$b
Electrical Engineering.
$3
1669528
773
0
$t
Masters Abstracts International
$g
57-04(E).
790
$a
0032
791
$a
M.S.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10622123
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9364629
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入