語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mott Transition In Strongly Correlat...
~
Lee, Tsung-Han.
FindBook
Google Book
Amazon
博客來
Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations./
作者:
Lee, Tsung-Han.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
116 p.
附註:
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Contained By:
Dissertation Abstracts International79-04B(E).
標題:
Condensed matter physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10288383
ISBN:
9780355327007
Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations.
Lee, Tsung-Han.
Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 116 p.
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Thesis (Ph.D.)--The Florida State University, 2017.
Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials.
ISBN: 9780355327007Subjects--Topical Terms:
3173567
Condensed matter physics.
Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations.
LDR
:04694nmm a2200337 4500
001
2161771
005
20181002081322.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355327007
035
$a
(MiAaPQ)AAI10288383
035
$a
(MiAaPQ)fsu:13983
035
$a
AAI10288383
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lee, Tsung-Han.
$3
3349733
245
1 0
$a
Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
116 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
500
$a
Adviser: Vladimir Dobrosavljevic.
502
$a
Thesis (Ph.D.)--The Florida State University, 2017.
520
$a
Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials.
520
$a
This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we improved DMFT to describe a Mott insulator containing spin-propagating and chargeless fermionic excitations, spinons. We found the spinon Fermi-liquid, in the Mott insulating phase, is immiscible to the electron Fermi-liquid, in the metallic phase, due to the strong scattering between spinons in a metal. Third, we proposed a new approach within the slave-boson (Gutzwiller) framework that allows to describe both the low energy quasiparticle excitation and the high energy Hubbard excitation, which cannot be captured within the original slave-boson framework.
520
$a
In the second part, we applied LDA+RISB to realistic materials modeling. First, we tested the accuracy of LDA+RISB on predicting the structure of transition metal compounds, CrO, MnO, FeO, CoO, CoS, and CoSe. Our results display remarkable agreements with the experimental observations. Second, we applied LDA+RISB to analyze the nature of the Am-O chemical bonding in the CsAm(CrO 4)2 crystal. Our results indicate the Am-O bonding has strongly covalent character, and they also address the importance of the correlation effects to describe the experimentally observed electronic structure.
520
$a
In summary, we proposed three extensions within DMFT and RISB framework, which allow to investigate the domain wall structure in metal-Mott insulator coexistence regime, the metal-to-Mott-insulator transition with spinons excitation in the Mott-insulating phase, and the Hubbard excitation within RISB approach. Furthermore, we demonstrated that LDA+RISB is a reliable approximation to the strongly correlated materials by applying it to the transition metal compounds and the Americian chromate compounds.
590
$a
School code: 0071.
650
4
$a
Condensed matter physics.
$3
3173567
650
4
$a
Theoretical physics.
$3
2144760
690
$a
0611
690
$a
0753
710
2
$a
The Florida State University.
$b
Physics.
$3
2099202
773
0
$t
Dissertation Abstracts International
$g
79-04B(E).
790
$a
0071
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10288383
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9361318
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入