語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Characterization of a Bio-Based, Bio...
~
Sobieski, Brian.
FindBook
Google Book
Amazon
博客來
Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development./
作者:
Sobieski, Brian.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
310 p.
附註:
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
Contained By:
Dissertation Abstracts International79-02B(E).
標題:
Materials science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10260964
ISBN:
9780355251326
Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development.
Sobieski, Brian.
Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 310 p.
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
Thesis (Ph.D.)--University of Delaware, 2017.
As modern society begins to focus on sustainability and renewable resources there is a growing need for the polymer industry to develop more environmentally friendly materials and practices. Part of this movement can be seen in the use of recycled materials in new products and in the development of bio-based, biodegradable polymers. Bio-based, biodegradable polymers are produced from renewable carbon sources, such as vegetable oils, typically polymerized using fermentation reactions via bacteria, and are able to be consumed by bacteria in landfills to completely convert the polymers to water and CO2. One class of such polymers are poly(hydroxyalkanoate)'s (PHAs), which are chiral, aliphatic polyesters. Within this class of polyesters are poly(hydroxybutyrate) (PHB) and the copolymer poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), which have received extensive study due to their material properties as thermoplastics. Although the properties of PHB have been widely explored, much still remains to be understood about these promising biodegradable polymers. Specifically, PHB and its copolymers exhibit physical gelation in most solvents, yet the origin and mechanism of gelation and the properties of the resulting gel state are unknown.
ISBN: 9780355251326Subjects--Topical Terms:
543314
Materials science.
Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development.
LDR
:05632nmm a2200313 4500
001
2159578
005
20180703084421.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355251326
035
$a
(MiAaPQ)AAI10260964
035
$a
(MiAaPQ)udel:12795
035
$a
AAI10260964
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Sobieski, Brian.
$3
3347448
245
1 0
$a
Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
310 p.
500
$a
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
500
$a
Advisers: John F. Rabolt; Daniel B. Chase.
502
$a
Thesis (Ph.D.)--University of Delaware, 2017.
520
$a
As modern society begins to focus on sustainability and renewable resources there is a growing need for the polymer industry to develop more environmentally friendly materials and practices. Part of this movement can be seen in the use of recycled materials in new products and in the development of bio-based, biodegradable polymers. Bio-based, biodegradable polymers are produced from renewable carbon sources, such as vegetable oils, typically polymerized using fermentation reactions via bacteria, and are able to be consumed by bacteria in landfills to completely convert the polymers to water and CO2. One class of such polymers are poly(hydroxyalkanoate)'s (PHAs), which are chiral, aliphatic polyesters. Within this class of polyesters are poly(hydroxybutyrate) (PHB) and the copolymer poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), which have received extensive study due to their material properties as thermoplastics. Although the properties of PHB have been widely explored, much still remains to be understood about these promising biodegradable polymers. Specifically, PHB and its copolymers exhibit physical gelation in most solvents, yet the origin and mechanism of gelation and the properties of the resulting gel state are unknown.
520
$a
This research effort was primarily focused on investigating the physical gel state of PHBHx. Five goals were laid out and completed: determining the origin of gelation, the mechanism of gelation, the structure of the gel state, the properties of the gel state, and the effects of gelation on electrospun fibers of PHBHx. These goals were achieved through material characterization of the gel state utilizing infrared spectroscopy/two-dimensional correlation spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and many other analysis methods. Crystallization of the polymer in solution was found to cause gelation in PHBHx solutions, where the polymer crystals act as tie points forming an interconnected network. The process of crystallization in solution was determined to follow the same method as crystallization in the bulk, neat polymer as it is cooled from a molten state. Morphological studies revealed that the polymer forms sub-micron fibrils and ribbons in xxviii the gel system forming an interconnected polymer network. The utility of this morphology combined with the bio-compatibility of PHBHx were demonstrated through growth of stem cells on the gel samples. Surprisingly, the stem cells did not differentiate and thrived on the freeze-dried PHBHx gels. These results indicate that the gel state of PHBHx could be used as a tissue engineering scaffold whose material properties can be tuned to the desired application without the concern of the stem cells differentiating into an unwanted cell type. Combined with the ease of generation of the PHBHx gels, these results show promising potential for industrial production of excellent three-dimensional culturing scaffolds. It was also found that the gels do not show signs of aging after gelation is complete and that the polymer exists in the amorphous and primary alpha crystal phases when gelled. Electrospun fibers of the polymer in solution with a solvent that promotes gelation displayed a new morphology. Rather than the typical cylindrical fiber morphology, these fibers formed coiled fiber mats. It is proposed that the formation of crystals before the fibers are formed causes the fibers to collapse thus forming the coils. Additional research was conducted on the neat polymer itself to further explore its material properties. PHB and PHBHx tend to have multiple melting transitions when heated to the amorphous phase. This multiple melting behavior was caused by the same, primary crystal form recrystallizing and having a bimodal size distribution, rather than arising from two different crystal phases. Thermal degradation of the copolymers was also studied and the reaction pathway suggested, beginning with the formation of a six-member ring precursor leading to chain scission of the polymer. It was also found that the formation of this precursor may cause the higher 3HHx content copolymers to be slightly more stable at high temperatures due to steric hindrance. Strain-induced crystallization of the beta crystal of PHBHx was performed in the 13 mol % 3HHx PHBHx by stretching films of the copolymer. All the research conducted during this project were performed to generate additional applications and further the utility of this class of bio-based, biodegradable polyesters.
590
$a
School code: 0060.
650
4
$a
Materials science.
$3
543314
650
4
$a
Plastics.
$3
649803
690
$a
0794
690
$a
0795
710
2
$a
University of Delaware.
$b
Materials Science and Engineering.
$3
3194990
773
0
$t
Dissertation Abstracts International
$g
79-02B(E).
790
$a
0060
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10260964
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9359125
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入