語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dynamic Discriminant Analysis with A...
~
Dockter, Rodney Lee, II.
FindBook
Google Book
Amazon
博客來
Dynamic Discriminant Analysis with Applications in Computational Surgery.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dynamic Discriminant Analysis with Applications in Computational Surgery./
作者:
Dockter, Rodney Lee, II.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
203 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Contained By:
Dissertation Abstracts International78-12B(E).
標題:
Mechanical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10286340
ISBN:
9780355091069
Dynamic Discriminant Analysis with Applications in Computational Surgery.
Dockter, Rodney Lee, II.
Dynamic Discriminant Analysis with Applications in Computational Surgery.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 203 p.
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Thesis (Ph.D.)--University of Minnesota, 2017.
Background: The field of computational surgery involves the use of new technologies to improve surgical safety and patient outcomes. Two open problems in this field include smart surgical tools for identifying tissues via backend sensing, and classifying surgical skill level using laparoscopic tool motion. Prior work in these fields has been impeded by the lack of a dynamic discriminant analysis technique capable of classifying data given systems with overwhelming similarity.
ISBN: 9780355091069Subjects--Topical Terms:
649730
Mechanical engineering.
Dynamic Discriminant Analysis with Applications in Computational Surgery.
LDR
:02640nmm a2200373 4500
001
2159418
005
20180628100931.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355091069
035
$a
(MiAaPQ)AAI10286340
035
$a
(MiAaPQ)umn:18168
035
$a
AAI10286340
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Dockter, Rodney Lee, II.
$3
3347287
245
1 0
$a
Dynamic Discriminant Analysis with Applications in Computational Surgery.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
203 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
500
$a
Adviser: Timothy M. Kowalewski.
502
$a
Thesis (Ph.D.)--University of Minnesota, 2017.
520
$a
Background: The field of computational surgery involves the use of new technologies to improve surgical safety and patient outcomes. Two open problems in this field include smart surgical tools for identifying tissues via backend sensing, and classifying surgical skill level using laparoscopic tool motion. Prior work in these fields has been impeded by the lack of a dynamic discriminant analysis technique capable of classifying data given systems with overwhelming similarity.
520
$a
Methods: Four new machine learning algorithms were developed (DLS, DPP, RELIEF-RBF, and Intent Vectors). These algorithms were then applied to the open problems within computational surgery. These algorithms are designed with the specific goal of finding regions of data with maximum discriminating information while ignoring regions of similarity or data scarcity. The results of these techniques are contrasted with current machine learning algorithms found in the literature.
520
$a
Results: For the tissue identification problem, results indicate that the proposed DLS algorithm provides better classification than existing methods. For the surgical skill evaluation problem, results indicate that the Intent Vectors approach provides equivalent or better classification accuracy when compared to prior art.
520
$a
Interpretation: The algorithms presented in this work provide a novel approach to the classification of time-series data for systems with overwhelming similarity by focusing on separability maximization while maintaining a tractable training routine and real-time classification for unseen data.
590
$a
School code: 0130.
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Robotics.
$3
519753
650
4
$a
Computer science.
$3
523869
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Surgery.
$3
707153
690
$a
0548
690
$a
0771
690
$a
0984
690
$a
0800
690
$a
0576
710
2
$a
University of Minnesota.
$b
Mechanical Engineering.
$3
1020853
773
0
$t
Dissertation Abstracts International
$g
78-12B(E).
790
$a
0130
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10286340
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9358965
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入