Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Atomic Layer Epitaxy Dielectric Base...
~
Zhou, Hong.
Linked to FindBook
Google Book
Amazon
博客來
Atomic Layer Epitaxy Dielectric Based GaN MOS Devices and Beyond.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Atomic Layer Epitaxy Dielectric Based GaN MOS Devices and Beyond./
Author:
Zhou, Hong.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
Description:
150 p.
Notes:
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Contained By:
Dissertation Abstracts International78-12B(E).
Subject:
Electrical engineering. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10274515
ISBN:
9780355096354
Atomic Layer Epitaxy Dielectric Based GaN MOS Devices and Beyond.
Zhou, Hong.
Atomic Layer Epitaxy Dielectric Based GaN MOS Devices and Beyond.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 150 p.
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Thesis (Ph.D.)--Purdue University, 2017.
GaN HEMT usually suffers from high Ig and ID current collapse due to its limited Schottky barrier height and high density of surface states. Although GaN MOSHEMT with amorphous gate dielectric is an effective way to suppress the Ig and passivate the surface states, high-quality gate dielectric on GaN MOS devices are still lacking. In this work, single crystalline gate dielectric Mg0.25Ca0.75O, grown by ALE, has been successfully integrated into three kinds of GaN MOSHEMTs, namely InAlN/GaN/SiC, AlGaN/GaN/SiC and AlGaN/GaN/Si MOSHEMTs. With a nearly lattice-matched oxide, the interface quality between the oxide and barrier is significantly improved. Ig is reduced by several orders of magnitudes compared to HEMTs. All three kinds of MOSHEMTs exhibit high ID on/off ratio exceeding 1011, near ideal SS, negligible ID-V GS hysteresis and negligible current collapse. RF small-signal characteristics of AlGaN/GaN/SiC MOSHEMTs show ft/fmax of 101/150 GHz for a Lg of 120 nm device and large-signal characteristics with Pout of 4.18 W/mm for a Lg=150 nm device at f=35 GHz. Enhancement-mode non-recessed AlGaN/GaN/Si fin-MOSHEMTs are also realized through the side-wall depletion of the fin structures. Combining with the high ID, high peak gm, and low Ron, MgCaO turns out to be a new and very promising gate dielectric for GaN MOS technology.
ISBN: 9780355096354Subjects--Topical Terms:
649834
Electrical engineering.
Atomic Layer Epitaxy Dielectric Based GaN MOS Devices and Beyond.
LDR
:03709nmm a2200313 4500
001
2156855
005
20180529081859.5
008
190424s2017 ||||||||||||||||| ||eng d
020
$a
9780355096354
035
$a
(MiAaPQ)AAI10274515
035
$a
(MiAaPQ)purdue:21412
035
$a
AAI10274515
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhou, Hong.
$3
1900681
245
1 0
$a
Atomic Layer Epitaxy Dielectric Based GaN MOS Devices and Beyond.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
150 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
500
$a
Adviser: Peide D. Ye.
502
$a
Thesis (Ph.D.)--Purdue University, 2017.
520
$a
GaN HEMT usually suffers from high Ig and ID current collapse due to its limited Schottky barrier height and high density of surface states. Although GaN MOSHEMT with amorphous gate dielectric is an effective way to suppress the Ig and passivate the surface states, high-quality gate dielectric on GaN MOS devices are still lacking. In this work, single crystalline gate dielectric Mg0.25Ca0.75O, grown by ALE, has been successfully integrated into three kinds of GaN MOSHEMTs, namely InAlN/GaN/SiC, AlGaN/GaN/SiC and AlGaN/GaN/Si MOSHEMTs. With a nearly lattice-matched oxide, the interface quality between the oxide and barrier is significantly improved. Ig is reduced by several orders of magnitudes compared to HEMTs. All three kinds of MOSHEMTs exhibit high ID on/off ratio exceeding 1011, near ideal SS, negligible ID-V GS hysteresis and negligible current collapse. RF small-signal characteristics of AlGaN/GaN/SiC MOSHEMTs show ft/fmax of 101/150 GHz for a Lg of 120 nm device and large-signal characteristics with Pout of 4.18 W/mm for a Lg=150 nm device at f=35 GHz. Enhancement-mode non-recessed AlGaN/GaN/Si fin-MOSHEMTs are also realized through the side-wall depletion of the fin structures. Combining with the high ID, high peak gm, and low Ron, MgCaO turns out to be a new and very promising gate dielectric for GaN MOS technology.
520
$a
Beyond the wide bandgap semiconductor GaN, promising next generation ultra-wide bandgap semiconductor beta-Ga2O3 is also investigated. Piranha solution and PDA were first used to optimize the ALD Al2O3/beta-Ga2O3 interface. Low C-V hysteresis of 0.1 V and Dit=2.3x1011 cm--2˙eV--1 are achieved due to the passivated dangling bonds at the interface. Meanwhile, we have demonstrated a record high ID of 600/450 mA/mm for D/E-mode back-gate GOOI FETs at a beta-Ga2O3 doping concentration of 2.8x1018 cm--3. Following the motivation of chasing higher I D and lower Ron, we have increased the doping concentration to 7.8x1018 cm--3 and the record ID has been improved to 1.5/1.0 A/mm for D/E-mode GOOI FETs at a lower Ron and Rc. All our GOOI FETs based on atomically flat ?-Ga2O3 nano-membrane has a RMS of 0.3 nm, high on/off ratio of 1010, and low SS of 140~160, even with 300 nm SiO2 gate dielectric. Finally, we have evaluated the self-heating effect and thermal property of top-gate GOOI FETs on SiO2/Si and sapphire substrates. Through utilizing a higher thermal conductivity sapphire substrate, the device only has a temperature increase of 43 °C even at a high device operation P=0.91 kW/mm2. High quality interface, high ID and on/off ratio, near ideal SS of 63 mV/dec, and reduced self-heating effect on sapphire substrate, top-gate GOOI FET shows the great promise as next generation high power devices.
590
$a
School code: 0183.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Materials science.
$3
543314
690
$a
0544
690
$a
0794
710
2
$a
Purdue University.
$b
Electrical and Computer Engineering.
$3
1018497
773
0
$t
Dissertation Abstracts International
$g
78-12B(E).
790
$a
0183
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10274515
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9356402
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login