語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Recent advances in ensembles for fea...
~
Bolon-Canedo, Veronica.
FindBook
Google Book
Amazon
博客來
Recent advances in ensembles for feature selection
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Recent advances in ensembles for feature selection/ by Veronica Bolon-Canedo, Amparo Alonso-Betanzos.
作者:
Bolon-Canedo, Veronica.
其他作者:
Alonso-Betanzos, Amparo.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xiv, 205 p. :ill. (some col.), digital ;24 cm.
內容註:
Basic concepts -- Feature selection -- Foundations of ensemble learning -- Ensembles for feature selection -- Combination of outputs -- Evaluation of ensembles for feature selection -- Other ensemble approaches -- Applications of ensembles versus traditional approaches: experimental results -- Software tools -- Emerging Challenges.
Contained By:
Springer eBooks
標題:
Engineering. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-90080-3
ISBN:
9783319900803
Recent advances in ensembles for feature selection
Bolon-Canedo, Veronica.
Recent advances in ensembles for feature selection
[electronic resource] /by Veronica Bolon-Canedo, Amparo Alonso-Betanzos. - Cham :Springer International Publishing :2018. - xiv, 205 p. :ill. (some col.), digital ;24 cm. - Intelligent systems reference library,v.1471868-4394 ;. - Intelligent systems reference library ;v.147..
Basic concepts -- Feature selection -- Foundations of ensemble learning -- Ensembles for feature selection -- Combination of outputs -- Evaluation of ensembles for feature selection -- Other ensemble approaches -- Applications of ensembles versus traditional approaches: experimental results -- Software tools -- Emerging Challenges.
This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance. With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative. The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining.
ISBN: 9783319900803
Standard No.: 10.1007/978-3-319-90080-3doiSubjects--Topical Terms:
586835
Engineering.
LC Class. No.: Q342 / .B653 2018
Dewey Class. No.: 006.3
Recent advances in ensembles for feature selection
LDR
:02523nmm a2200325 a 4500
001
2142180
003
DE-He213
005
20181109170508.0
006
m d
007
cr nn 008maaau
008
181214s2018 gw s 0 eng d
020
$a
9783319900803
$q
(electronic bk.)
020
$a
9783319900797
$q
(paper)
024
7
$a
10.1007/978-3-319-90080-3
$2
doi
035
$a
978-3-319-90080-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q342
$b
.B653 2018
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3
$2
23
090
$a
Q342
$b
.B693 2018
100
1
$a
Bolon-Canedo, Veronica.
$3
2162388
245
1 0
$a
Recent advances in ensembles for feature selection
$h
[electronic resource] /
$c
by Veronica Bolon-Canedo, Amparo Alonso-Betanzos.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiv, 205 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Intelligent systems reference library,
$x
1868-4394 ;
$v
v.147
505
0
$a
Basic concepts -- Feature selection -- Foundations of ensemble learning -- Ensembles for feature selection -- Combination of outputs -- Evaluation of ensembles for feature selection -- Other ensemble approaches -- Applications of ensembles versus traditional approaches: experimental results -- Software tools -- Emerging Challenges.
520
$a
This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method. It reviews various techniques for combining partial results, measuring diversity and evaluating ensemble performance. With the advent of Big Data, feature selection (FS) has become more necessary than ever to achieve dimensionality reduction. With so many methods available, it is difficult to choose the most appropriate one for a given setting, thus making the ensemble paradigm an interesting alternative. The authors first focus on the foundations of ensemble learning and classical approaches, before diving into the specific aspects of ensembles for FS, such as combining partial results, measuring diversity and evaluating ensemble performance. Lastly, the book shows examples of successful applications of ensembles for FS and introduces the new challenges that researchers now face. As such, the book offers a valuable guide for all practitioners, researchers and graduate students in the areas of machine learning and data mining.
650
0
$a
Engineering.
$3
586835
650
0
$a
Artificial intelligence.
$3
516317
650
0
$a
Pattern perception.
$3
649387
650
0
$a
Computational intelligence.
$3
595739
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Pattern Recognition.
$3
891045
700
1
$a
Alonso-Betanzos, Amparo.
$3
2162390
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Intelligent systems reference library ;
$v
v.147.
$3
3321578
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-90080-3
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9346732
電子資源
11.線上閱覽_V
電子書
EB Q342 .B653 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入