語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Network data analytics = a hands-on ...
~
Srinivasa, K. G.
FindBook
Google Book
Amazon
博客來
Network data analytics = a hands-on approach for application development /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Network data analytics/ by K. G. Srinivasa, Siddesh G. M., Srinidhi H.
其他題名:
a hands-on approach for application development /
作者:
Srinivasa, K. G.
其他作者:
G. M., Siddesh.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xxv, 398 p. :ill. (some col.), digital ;24 cm.
內容註:
Part I: Data Analytics and Hadoop -- Chapter 1. Introduction to Data Analytics -- Chapter 2. Introduction to Hadoop -- Chapter 3. Data Analytics with Map Reduce -- Part II: Tools for Data Analytics -- Chapter 4. Apache Pig -- Chapter 5. Apache Hive -- Chapter 6. Apache Spark -- Chapter 7. Apache Flume -- Chapter 8. Apache Storm -- Chapter 9. Python R -- Part III: Machine Learning for Data Analytics -- Chapter 10. Basics of Machine Learning -- Chapter 11. Linear Regression -- Chapter 12. Logistic Regression -- Chapter 13. Machine Learning on Spark -- Part IV: Exploring and Visualizing Data -- Chapter 14. Introduction to Visualization -- Chapter 15. Principles of Data Visualization -- Chapter 16. Visualization Charts -- Chapter 17. Popular Visualization Tools -- Chapter 18. Data Visualization with Hadoop -- Part V: Case Studies -- Chapter 19. Product Recommendation -- Chapter 20. Market Basket Analysis.
Contained By:
Springer eBooks
標題:
Electronic data processing - Distributed processing. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-77800-6
ISBN:
9783319778006
Network data analytics = a hands-on approach for application development /
Srinivasa, K. G.
Network data analytics
a hands-on approach for application development /[electronic resource] :by K. G. Srinivasa, Siddesh G. M., Srinidhi H. - Cham :Springer International Publishing :2018. - xxv, 398 p. :ill. (some col.), digital ;24 cm. - Computer communications and networks,1617-7975. - Computer communications and networks..
Part I: Data Analytics and Hadoop -- Chapter 1. Introduction to Data Analytics -- Chapter 2. Introduction to Hadoop -- Chapter 3. Data Analytics with Map Reduce -- Part II: Tools for Data Analytics -- Chapter 4. Apache Pig -- Chapter 5. Apache Hive -- Chapter 6. Apache Spark -- Chapter 7. Apache Flume -- Chapter 8. Apache Storm -- Chapter 9. Python R -- Part III: Machine Learning for Data Analytics -- Chapter 10. Basics of Machine Learning -- Chapter 11. Linear Regression -- Chapter 12. Logistic Regression -- Chapter 13. Machine Learning on Spark -- Part IV: Exploring and Visualizing Data -- Chapter 14. Introduction to Visualization -- Chapter 15. Principles of Data Visualization -- Chapter 16. Visualization Charts -- Chapter 17. Popular Visualization Tools -- Chapter 18. Data Visualization with Hadoop -- Part V: Case Studies -- Chapter 19. Product Recommendation -- Chapter 20. Market Basket Analysis.
In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.
ISBN: 9783319778006
Standard No.: 10.1007/978-3-319-77800-6doiSubjects--Topical Terms:
548601
Electronic data processing
--Distributed processing.
LC Class. No.: QA76.9.D5
Dewey Class. No.: 004.6
Network data analytics = a hands-on approach for application development /
LDR
:03073nmm a2200337 a 4500
001
2142010
003
DE-He213
005
20180426135934.0
006
m d
007
cr nn 008maaau
008
181214s2018 gw s 0 eng d
020
$a
9783319778006
$q
(electronic bk.)
020
$a
9783319777993
$q
(paper)
024
7
$a
10.1007/978-3-319-77800-6
$2
doi
035
$a
978-3-319-77800-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D5
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
004.6
$2
23
090
$a
QA76.9.D5
$b
S774 2018
100
1
$a
Srinivasa, K. G.
$3
1002627
245
1 0
$a
Network data analytics
$h
[electronic resource] :
$b
a hands-on approach for application development /
$c
by K. G. Srinivasa, Siddesh G. M., Srinidhi H.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xxv, 398 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Computer communications and networks,
$x
1617-7975
505
0
$a
Part I: Data Analytics and Hadoop -- Chapter 1. Introduction to Data Analytics -- Chapter 2. Introduction to Hadoop -- Chapter 3. Data Analytics with Map Reduce -- Part II: Tools for Data Analytics -- Chapter 4. Apache Pig -- Chapter 5. Apache Hive -- Chapter 6. Apache Spark -- Chapter 7. Apache Flume -- Chapter 8. Apache Storm -- Chapter 9. Python R -- Part III: Machine Learning for Data Analytics -- Chapter 10. Basics of Machine Learning -- Chapter 11. Linear Regression -- Chapter 12. Logistic Regression -- Chapter 13. Machine Learning on Spark -- Part IV: Exploring and Visualizing Data -- Chapter 14. Introduction to Visualization -- Chapter 15. Principles of Data Visualization -- Chapter 16. Visualization Charts -- Chapter 17. Popular Visualization Tools -- Chapter 18. Data Visualization with Hadoop -- Part V: Case Studies -- Chapter 19. Product Recommendation -- Chapter 20. Market Basket Analysis.
520
$a
In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.
650
0
$a
Electronic data processing
$x
Distributed processing.
$3
548601
650
0
$a
Machine learning.
$3
533906
650
0
$a
Big data.
$3
2045508
650
0
$a
Internet of things.
$3
2057703
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Visualization.
$3
586179
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
700
1
$a
G. M., Siddesh.
$3
3321246
700
1
$a
H., Srinidhi.
$3
3321247
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Computer communications and networks.
$3
1568371
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-77800-6
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9346562
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入