語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A primer on compression in the memor...
~
Sardashti, Somayeh,
FindBook
Google Book
Amazon
博客來
A primer on compression in the memory hierarchy /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A primer on compression in the memory hierarchy // Somayeh Sardashti, Angelos Arelakis, Per Stenstrom, David A. Wood
作者:
Sardashti, Somayeh,
其他作者:
Arelakis, Angelos,
面頁冊數:
1 online resource (xvii, 68 pages) :illustrations
內容註:
1. Introduction -- 2. Compression algorithms -- 2.1 Value locality -- 2.2 Compression algorithm taxonomy -- 2.3 Classification of compression algorithms -- 2.3.1 Run-length encoding -- 2.3.2 Lempel-Ziv (LZ) coding -- 2.3.3 Huffman coding -- 2.3.4 Frequent value compression (FVC) -- 2.3.5 Frequent pattern compression (FPC) -- 2.3.6 Base-delta-immediate (BDI) -- 2.3.7 Cache packer (C-PACK) -- 2.3.8 Deduplication -- 2.3.9 Instruction compression -- 2.3.10 Floating-point compression -- 2.3.11 Hybrid compression -- 2.4 Metrics to evaluate the success of a compression algorithm -- 2.5 Summary -- 3. Cache compression -- 3.1 Cache compaction taxonomy -- 3.2 Cache compaction mechanisms -- 3.2.1 Simple compaction mechanisms -- 3.2.2 Supporting variable size compression -- 3.2.3 Decoupled compressed caches -- 3.2.4 Skewed compressed caches -- 3.3 Policies to manage compressed caches -- 3.4 Cache compression to improve cache power and area -- 3.5 Summary -- 4. Memory compression
內容註:
4.1 Baseline system architecture of a compressed memory system -- 4.2 Compression algorithms -- 4.3 Compressed memory organizations -- 4.3.1 The IBM MXT approach -- 4.3.2 The Ekman/Stenstrom approach -- 4.3.3 The decoupled zero-compression approach -- 4.3.4 The linear compressed pages approach -- 4.4 Summary -- 5. Cache/memory link compression -- 5.1 Link compression for narrow value locality -- 5.2 Link compression for clustered value locality -- 5.3 Link compression for temporal value locality -- 5.3.1 The citron scheme -- 5.3.2 Frequent value encoding -- 5.4 Link compression methods applied to compressed memory data -- 5.5 Summary -- 6. Concluding remarks -- References -- Authors' biographies
標題:
Data compression (Computer science) -
電子資源:
http://portal.igpublish.com/iglibrary/search/MCPB0000864.html
ISBN:
9781627057042
A primer on compression in the memory hierarchy /
Sardashti, Somayeh,
A primer on compression in the memory hierarchy /
Somayeh Sardashti, Angelos Arelakis, Per Stenstrom, David A. Wood - 1 online resource (xvii, 68 pages) :illustrations - Synthesis lectures on computer architecture,#361935-3243 ;. - Synthesis lectures in computer architecture ;#36.
Includes bibliographical references (pages 55-66)
1. Introduction -- 2. Compression algorithms -- 2.1 Value locality -- 2.2 Compression algorithm taxonomy -- 2.3 Classification of compression algorithms -- 2.3.1 Run-length encoding -- 2.3.2 Lempel-Ziv (LZ) coding -- 2.3.3 Huffman coding -- 2.3.4 Frequent value compression (FVC) -- 2.3.5 Frequent pattern compression (FPC) -- 2.3.6 Base-delta-immediate (BDI) -- 2.3.7 Cache packer (C-PACK) -- 2.3.8 Deduplication -- 2.3.9 Instruction compression -- 2.3.10 Floating-point compression -- 2.3.11 Hybrid compression -- 2.4 Metrics to evaluate the success of a compression algorithm -- 2.5 Summary -- 3. Cache compression -- 3.1 Cache compaction taxonomy -- 3.2 Cache compaction mechanisms -- 3.2.1 Simple compaction mechanisms -- 3.2.2 Supporting variable size compression -- 3.2.3 Decoupled compressed caches -- 3.2.4 Skewed compressed caches -- 3.3 Policies to manage compressed caches -- 3.4 Cache compression to improve cache power and area -- 3.5 Summary -- 4. Memory compression
This synthesis lecture presents the current state-of-the-art in applying low-latency, lossless hardware compression algorithms to cache, memory, and the memory/cache link. There are many non- trivial challenges that must be addressed to make data compression work well in this context. First, since compressed data must be decompressed before it can be accessed, decompression latency ends up on the critical memory access path. This imposes a significant constraint on the choice of compression algorithms. Second, while conventional memory systems store fixed-size entities like data types, cache blocks, and memory pages, these entities will suddenly vary in size in a memory system that employs compression. Dealing with variable size entities in a memory system using compression has a significant impact on the way caches are organized and how to manage the resources in main memory. We systematically discuss solutions in the open literature to these problems
ISBN: 9781627057042
Standard No.: 10.2200 / S00683ED1V01Y201511CAC036doiSubjects--Topical Terms:
664509
Data compression (Computer science)
Subjects--Index Terms:
cache designIndex Terms--Genre/Form:
959526
Electronic books
Dewey Class. No.: 005.746
A primer on compression in the memory hierarchy /
LDR
:05210nmm0a2200445 ib450
001
2139183
005
20181023232058.0
006
m o d
007
cr cnu---unuuu
008
181127t20162016caua fob 000 0 eng d
020
$a
9781627057042
$q
(electronic bk.)
020
$a
1627057048
$q
(electronic bk.)
020
$z
9781627054157
$q
(print)
020
$z
1627054154
$q
(print)
024
7
$a
10.2200 / S00683ED1V01Y201511CAC036
$2
doi
035
$a
IGP290286
040
$a
CaBNVSL
$b
eng
$e
rda
$e
pn
$c
J2I
$d
J2I
$d
GZM
$d
UIU
$d
WAU
$d
EBLCP
$d
YDXCP
$d
NTBC
082
0 4
$a
005.746
$2
23
100
1
$a
Sardashti, Somayeh,
$e
author
$3
3314884
245
1 2
$a
A primer on compression in the memory hierarchy /
$c
Somayeh Sardashti, Angelos Arelakis, Per Stenstrom, David A. Wood
264
1
$a
[San Rafael, California] :
$b
Morgan & Claypool Publishers,
$c
[2016]
264
4
$c
c2016
300
$a
1 online resource (xvii, 68 pages) :
$b
illustrations
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
490
0
$a
Synthesis lectures on computer architecture,
$x
1935-3243 ;
$v
#36
504
$a
Includes bibliographical references (pages 55-66)
505
0
$a
1. Introduction -- 2. Compression algorithms -- 2.1 Value locality -- 2.2 Compression algorithm taxonomy -- 2.3 Classification of compression algorithms -- 2.3.1 Run-length encoding -- 2.3.2 Lempel-Ziv (LZ) coding -- 2.3.3 Huffman coding -- 2.3.4 Frequent value compression (FVC) -- 2.3.5 Frequent pattern compression (FPC) -- 2.3.6 Base-delta-immediate (BDI) -- 2.3.7 Cache packer (C-PACK) -- 2.3.8 Deduplication -- 2.3.9 Instruction compression -- 2.3.10 Floating-point compression -- 2.3.11 Hybrid compression -- 2.4 Metrics to evaluate the success of a compression algorithm -- 2.5 Summary -- 3. Cache compression -- 3.1 Cache compaction taxonomy -- 3.2 Cache compaction mechanisms -- 3.2.1 Simple compaction mechanisms -- 3.2.2 Supporting variable size compression -- 3.2.3 Decoupled compressed caches -- 3.2.4 Skewed compressed caches -- 3.3 Policies to manage compressed caches -- 3.4 Cache compression to improve cache power and area -- 3.5 Summary -- 4. Memory compression
505
0 0
$a
4.1 Baseline system architecture of a compressed memory system -- 4.2 Compression algorithms -- 4.3 Compressed memory organizations -- 4.3.1 The IBM MXT approach -- 4.3.2 The Ekman/Stenstrom approach -- 4.3.3 The decoupled zero-compression approach -- 4.3.4 The linear compressed pages approach -- 4.4 Summary -- 5. Cache/memory link compression -- 5.1 Link compression for narrow value locality -- 5.2 Link compression for clustered value locality -- 5.3 Link compression for temporal value locality -- 5.3.1 The citron scheme -- 5.3.2 Frequent value encoding -- 5.4 Link compression methods applied to compressed memory data -- 5.5 Summary -- 6. Concluding remarks -- References -- Authors' biographies
520
$a
This synthesis lecture presents the current state-of-the-art in applying low-latency, lossless hardware compression algorithms to cache, memory, and the memory/cache link. There are many non- trivial challenges that must be addressed to make data compression work well in this context. First, since compressed data must be decompressed before it can be accessed, decompression latency ends up on the critical memory access path. This imposes a significant constraint on the choice of compression algorithms. Second, while conventional memory systems store fixed-size entities like data types, cache blocks, and memory pages, these entities will suddenly vary in size in a memory system that employs compression. Dealing with variable size entities in a memory system using compression has a significant impact on the way caches are organized and how to manage the resources in main memory. We systematically discuss solutions in the open literature to these problems
520
$a
Chapter 2 provides the foundations of data compression by first introducing the fundamental concept of value locality. We then introduce a taxonomy of compression algorithms and show how previously proposed algorithms fit within that logical framework. Chapter 3 discusses the different ways that cache memory systems can employ compression, focusing on the tradeoffs between latency, capacity, and complexity of alternative ways to compact compressed cache blocks. Chapter 4 discusses issues in applying data compression to main memory and Chapter 5 covers techniques for compressing data on the cache-to-memory links. This book should help a skilled memory system designer understand the fundamental challenges in applying compression to the memory hierarchy and introduce him/her to the state-of-the-art techniques in addressing them
588
$a
Online resource; title from PDF title page (Morgan & Claypool, viewed on January 5, 2016)
588
$a
Print version record
650
0
$a
Data compression (Computer science)
$3
664509
650
0
$a
Memory hierarchy (Computer science)
$3
867899
653
$a
cache design
653
$a
memory system
653
$a
memory hierarchy
653
$a
data compression
653
$a
performance
653
$a
energy efficiency
655
4
$a
Electronic books
$3
959526
700
1
$a
Arelakis, Angelos,
$e
author
$3
3314885
700
1
$a
Stenstrom, Per,
$e
author
$3
3314886
700
1
$a
Wood, David Allen,
$e
author
$3
3314887
776
0 8
$i
Print version:
$a
Sardashti, Somayeh.
$t
Primer on compression in the memory hierarchy.
$d
[San Rafael, Calif.] : Morgan & Claypool Publishers, [2016]
$z
9781627054157
830
0
$a
Synthesis lectures in computer architecture ;
$v
#36
$3
3314888
856
4 0
$u
http://portal.igpublish.com/iglibrary/search/MCPB0000864.html
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9345248
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D33 S276 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入