語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep neural networks in a mathematic...
~
Caterini, Anthony L.
FindBook
Google Book
Amazon
博客來
Deep neural networks in a mathematical framework
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep neural networks in a mathematical framework/ by Anthony L. Caterini, Dong Eui Chang.
作者:
Caterini, Anthony L.
其他作者:
Chang, Dong Eui.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xiii, 84 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Neural networks (Computer science) -
電子資源:
http://dx.doi.org/10.1007/978-3-319-75304-1
ISBN:
9783319753041
Deep neural networks in a mathematical framework
Caterini, Anthony L.
Deep neural networks in a mathematical framework
[electronic resource] /by Anthony L. Caterini, Dong Eui Chang. - Cham :Springer International Publishing :2018. - xiii, 84 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
ISBN: 9783319753041
Standard No.: 10.1007/978-3-319-75304-1doiSubjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87
Dewey Class. No.: 006.32
Deep neural networks in a mathematical framework
LDR
:02051nmm a2200325 a 4500
001
2136520
003
DE-He213
005
20180322112741.0
006
m d
007
cr nn 008maaau
008
181117s2018 gw s 0 eng d
020
$a
9783319753041
$q
(electronic bk.)
020
$a
9783319753034
$q
(paper)
024
7
$a
10.1007/978-3-319-75304-1
$2
doi
035
$a
978-3-319-75304-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.C359 2018
100
1
$a
Caterini, Anthony L.
$3
3307964
245
1 0
$a
Deep neural networks in a mathematical framework
$h
[electronic resource] /
$c
by Anthony L. Caterini, Dong Eui Chang.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 84 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
520
$a
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
650
0
$a
Neural networks (Computer science)
$3
532070
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Pattern Recognition.
$3
891045
700
1
$a
Chang, Dong Eui.
$3
2145768
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-75304-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9343214
電子資源
11.線上閱覽_V
電子書
EB QA76.87
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入