Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Fabrication of metal-organic framewo...
~
Xia, Wei.
Linked to FindBook
Google Book
Amazon
博客來
Fabrication of metal-organic framework derived nanomaterials and their electrochemical applications
Record Type:
Electronic resources : Monograph/item
Title/Author:
Fabrication of metal-organic framework derived nanomaterials and their electrochemical applications/ by Wei Xia.
Author:
Xia, Wei.
Published:
Singapore :Springer Singapore : : 2018.,
Description:
xiv, 138 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Introduction -- Preparation and characterization of MOF-derived nanomaterials -- Formation of the N-doped carbon nanoparticles and their application in oxygen reduction catalysis and Li storage -- Formation of the core-shell metal oxide nanoparticles and their application in oxygen reduction catalysis -- Formation of the hollow metal oxide nanoparticles and their application in oxygen reduction catalysis -- Formation of the 3D porous carbon and related application in Li-S cells -- Conclusion.
Contained By:
Springer eBooks
Subject:
Supramolecular organometallic chemistry. -
Online resource:
http://dx.doi.org/10.1007/978-981-10-6811-9
ISBN:
9789811068119
Fabrication of metal-organic framework derived nanomaterials and their electrochemical applications
Xia, Wei.
Fabrication of metal-organic framework derived nanomaterials and their electrochemical applications
[electronic resource] /by Wei Xia. - Singapore :Springer Singapore :2018. - xiv, 138 p. :ill. (some col.), digital ;24 cm. - Springer theses,2190-5053.. - Springer theses..
Introduction -- Preparation and characterization of MOF-derived nanomaterials -- Formation of the N-doped carbon nanoparticles and their application in oxygen reduction catalysis and Li storage -- Formation of the core-shell metal oxide nanoparticles and their application in oxygen reduction catalysis -- Formation of the hollow metal oxide nanoparticles and their application in oxygen reduction catalysis -- Formation of the 3D porous carbon and related application in Li-S cells -- Conclusion.
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
ISBN: 9789811068119
Standard No.: 10.1007/978-981-10-6811-9doiSubjects--Topical Terms:
548570
Supramolecular organometallic chemistry.
LC Class. No.: QD882 / .X539 2018
Dewey Class. No.: 547.0504426
Fabrication of metal-organic framework derived nanomaterials and their electrochemical applications
LDR
:02329nmm a2200337 a 4500
001
2136486
003
DE-He213
005
20180907170713.0
006
m d
007
cr nn 008maaau
008
181117s2018 si s 0 eng d
020
$a
9789811068119
$q
(electronic bk.)
020
$a
9789811068102
$q
(paper)
024
7
$a
10.1007/978-981-10-6811-9
$2
doi
035
$a
978-981-10-6811-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QD882
$b
.X539 2018
072
7
$a
TBN
$2
bicssc
072
7
$a
TEC027000
$2
bisacsh
072
7
$a
SCI050000
$2
bisacsh
082
0 4
$a
547.0504426
$2
23
090
$a
QD882
$b
.X6 2018
100
1
$a
Xia, Wei.
$3
3307896
245
1 0
$a
Fabrication of metal-organic framework derived nanomaterials and their electrochemical applications
$h
[electronic resource] /
$c
by Wei Xia.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2018.
300
$a
xiv, 138 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053.
505
0
$a
Introduction -- Preparation and characterization of MOF-derived nanomaterials -- Formation of the N-doped carbon nanoparticles and their application in oxygen reduction catalysis and Li storage -- Formation of the core-shell metal oxide nanoparticles and their application in oxygen reduction catalysis -- Formation of the hollow metal oxide nanoparticles and their application in oxygen reduction catalysis -- Formation of the 3D porous carbon and related application in Li-S cells -- Conclusion.
520
$a
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
650
0
$a
Supramolecular organometallic chemistry.
$3
548570
650
0
$a
Organometallic polymers.
$3
604639
650
0
$a
Nanostructured materials.
$3
584856
650
1 4
$a
Materials Science.
$3
890867
650
2 4
$a
Nanotechnology.
$3
526235
650
2 4
$a
Electrochemistry.
$3
557553
650
2 4
$a
Inorganic Chemistry.
$3
890827
650
2 4
$a
Catalysis.
$3
560465
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
1314442
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-6811-9
950
$a
Chemistry and Materials Science (Springer-11644)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9343180
電子資源
11.線上閱覽_V
電子書
EB QD882 .X539 2018
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login