Brainlesion = glioma, multiple scler...
BrainLes (Workshop) (2017 :)

FindBook      Google Book      Amazon      博客來     
  • Brainlesion = glioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Brainlesion/ edited by Alessandro Crimi ... [et al.].
    其他題名: glioma, multiple sclerosis, stroke and traumatic brain injuries : third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017 : revised selected papers /
    其他題名: MICCAI 2017
    其他作者: Crimi, Alessandro.
    團體作者: BrainLes (Workshop)
    出版者: Cham :Springer International Publishing : : 2018.,
    面頁冊數: xiii, 517 p. :ill., digital ;24 cm.
    內容註: Invited Talks -- Dice overlap measures for objects of unknown number: Application to lesion segmentation -- Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials -- Brain Lesion Image Analysis -- Automated Segmentation of Multiple Sclerosis Lesions using Multi-Dimensional Gated Recurrent Units -- Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation -- MARCEL (inter-Modality Ane Registration with CorELation ratio): An Application for Brain Shift Correction in Ultrasound-Guided Brain Tumor Resection -- Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks -- Overall Survival Time Prediction for High Grade Gliomas based on Sparse Representation Framework -- Traumatic Brain Lesion Quantication based on Mean Diusivity Changes -- Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries -- Sub-Acute & Chronic Ischemic Stroke Lesion MRI Segmentation -- Brain Tumor Segmentation Using an Adversarial Network -- Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma -- Brain Tumor Image Segmentation -- Deep Learning based Multimodal Brain Tumor Diagnosis -- Multimodal Brain Tumor Segmentation using Ensemble of Forest Method -- Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation -- Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks -- 3D Brain Tumor Segmentation through Integrating Multiple 2D FCNNs -- MRI Brain Tumor Segmentation and Patient Survival Prediction using Random Forests and Fully Convolutional Networks -- Automatic Segmentation and Overall Survival Prediction in Gliomas using Fully Convolutional Neural Network and Texture Analysis -- Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks -- A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor -- Dilated Convolutions for Brain Tumor Segmentation in MRI Scans -- Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation -- TPCNN: Two-phase Patch-based Convolutional Neural Network for Automatic Brain Tumor Segmentation and Survival Prediction -- Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge -- Multi-modal PixelNet for Brain Tumor Segmentation -- Brain Tumor Segmentation using Dense Fully Convolutional Neural Network -- Brain Tumor Segmentation in MRI Scans using Deeply-Supervised Neural Networks -- Brain Tumor Segmentation and Parsing on MRIs using Multiresolution Neural Networks -- Brain Tumor Segmentation using Deep Fully Convolutional Neural Networks -- Glioblastoma and Survival Prediction -- MRI Augmentation via Elastic Registration for Brain Lesions Segmentation -- Cascaded V-Net using ROI masks for brain tumor segmentation -- Brain Tumor Segmentation using a 3D FCN with Multi-Scale Loss -- Brain tumor segmentation using a multi-path CNN based method -- 3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences -- Automated Brain Tumor Segmentation on Magnetic Resonance Images (MRIs) and Patient Overall Survival Prediction using Support Vector Machines -- Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation -- Tumor segmentation from multimodal MRI using random forest with superpixel and tensor based feature extraction -- Towards Uncertainty-assisted Brain Tumor Segmentation and Survival Prediction -- Ischemic Stroke Lesion Image Segmentation -- WMH Segmentation Challenge: a Texture-based Classication Approach -- White Matter Hyperintensities Segmentation In a Few Seconds Using Fully Convolutional Network and Transfer Learning.
    Contained By: Springer eBooks
    標題: Brain - Congresses. - Tumors -
    電子資源: http://dx.doi.org/10.1007/978-3-319-75238-9
    ISBN: 9783319752389
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入