語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Guide to big data applications
~
SpringerLink (Online service)
FindBook
Google Book
Amazon
博客來
Guide to big data applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Guide to big data applications/ edited by S. Srinivasan.
其他作者:
Srinivasan, S.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xvii, 565 p. :ill., digital ;24 cm.
內容註:
Introduction -- Big Data Analytics -- Big Data and Social Media -- Use of Cloud Computing for Big Data in Business -- Economic Data Analysis Related to Developing Countries -- High Performance Computing and Big Data -- Big Data Applications in Physics -- Big Data Applications in Chemistry -- Big Data Applications in Mathematics -- Big Data Applications in Biology -- Big Data Applications in Engineering -- Big Data Applications in Meteorology -- Big Data Applications in Environmental Science -- Big Data Applications in Energy -- Security Applications for Big Data -- Big Data Applications in Network Traffic Analysis -- Big Data Applications in Supply Chain Logistics -- Big Data Applications in Healthcare -- Big Data Applications in Cancer Research -- Impact of Big Data in Marketing -- Use of Big Data in Banking -- Using Big Data for Fraud Detection in Accounting -- Using Big Data for Supply Chain Management -- Privacy Implications of Big Data -- Legal Perspectives of Big Data -- Ethical Handling of Big Data in Practical Uses -- Conclusion.
Contained By:
Springer eBooks
標題:
Big data. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-53817-4
ISBN:
9783319538174
Guide to big data applications
Guide to big data applications
[electronic resource] /edited by S. Srinivasan. - Cham :Springer International Publishing :2018. - xvii, 565 p. :ill., digital ;24 cm. - Studies in big data,v.262197-6503 ;. - Studies in big data ;v.26..
Introduction -- Big Data Analytics -- Big Data and Social Media -- Use of Cloud Computing for Big Data in Business -- Economic Data Analysis Related to Developing Countries -- High Performance Computing and Big Data -- Big Data Applications in Physics -- Big Data Applications in Chemistry -- Big Data Applications in Mathematics -- Big Data Applications in Biology -- Big Data Applications in Engineering -- Big Data Applications in Meteorology -- Big Data Applications in Environmental Science -- Big Data Applications in Energy -- Security Applications for Big Data -- Big Data Applications in Network Traffic Analysis -- Big Data Applications in Supply Chain Logistics -- Big Data Applications in Healthcare -- Big Data Applications in Cancer Research -- Impact of Big Data in Marketing -- Use of Big Data in Banking -- Using Big Data for Fraud Detection in Accounting -- Using Big Data for Supply Chain Management -- Privacy Implications of Big Data -- Legal Perspectives of Big Data -- Ethical Handling of Big Data in Practical Uses -- Conclusion.
This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
ISBN: 9783319538174
Standard No.: 10.1007/978-3-319-53817-4doiSubjects--Topical Terms:
2045508
Big data.
LC Class. No.: QA76.9.B45 / G853 2018
Dewey Class. No.: 005.7
Guide to big data applications
LDR
:02849nmm a2200325 a 4500
001
2130457
003
DE-He213
005
20170526114748.0
006
m d
007
cr nn 008maaau
008
181005s2018 gw s 0 eng d
020
$a
9783319538174
$q
(electronic bk.)
020
$a
9783319538167
$q
(paper)
024
7
$a
10.1007/978-3-319-53817-4
$2
doi
035
$a
978-3-319-53817-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
$b
G853 2018
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
G946 2018
245
0 0
$a
Guide to big data applications
$h
[electronic resource] /
$c
edited by S. Srinivasan.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xvii, 565 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.26
505
0
$a
Introduction -- Big Data Analytics -- Big Data and Social Media -- Use of Cloud Computing for Big Data in Business -- Economic Data Analysis Related to Developing Countries -- High Performance Computing and Big Data -- Big Data Applications in Physics -- Big Data Applications in Chemistry -- Big Data Applications in Mathematics -- Big Data Applications in Biology -- Big Data Applications in Engineering -- Big Data Applications in Meteorology -- Big Data Applications in Environmental Science -- Big Data Applications in Energy -- Security Applications for Big Data -- Big Data Applications in Network Traffic Analysis -- Big Data Applications in Supply Chain Logistics -- Big Data Applications in Healthcare -- Big Data Applications in Cancer Research -- Impact of Big Data in Marketing -- Use of Big Data in Banking -- Using Big Data for Fraud Detection in Accounting -- Using Big Data for Supply Chain Management -- Privacy Implications of Big Data -- Legal Perspectives of Big Data -- Ethical Handling of Big Data in Practical Uses -- Conclusion.
520
$a
This handbook brings together a variety of approaches to the uses of big data in multiple fields, primarily science, medicine, and business. This single resource features contributions from researchers around the world from a variety of fields, where they share their findings and experience. This book is intended to help spur further innovation in big data. The research is presented in a way that allows readers, regardless of their field of study, to learn from how applications have proven successful and how similar applications could be used in their own field. Contributions stem from researchers in fields such as physics, biology, energy, healthcare, and business. The contributors also discuss important topics such as fraud detection, privacy implications, legal perspectives, and ethical handling of big data.
650
0
$a
Big data.
$3
2045508
650
0
$a
Application software.
$3
527258
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Communications Engineering, Networks.
$3
891094
650
2 4
$a
Computer Systems Organization and Communication Networks.
$3
891212
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Big Data/Analytics.
$3
2186785
650
2 4
$a
Health Informatics.
$3
892928
650
2 4
$a
International IT and Media Law, Intellectual Property Law.
$3
1568595
700
1
$a
Srinivasan, S.
$3
2068348
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.26.
$3
3295035
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-53817-4
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9339192
電子資源
11.線上閱覽_V
電子書
EB QA76.9.B45 G853 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入