語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Operations research applications in ...
~
Johnson, Benjamin Lloyd.
FindBook
Google Book
Amazon
博客來
Operations research applications in nuclear energy.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Operations research applications in nuclear energy./
作者:
Johnson, Benjamin Lloyd.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2017,
面頁冊數:
127 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Contained By:
Dissertation Abstracts International78-07B(E).
標題:
Operations research. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10255220
ISBN:
9781369628579
Operations research applications in nuclear energy.
Johnson, Benjamin Lloyd.
Operations research applications in nuclear energy.
- Ann Arbor : ProQuest Dissertations & Theses, 2017 - 127 p.
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Thesis (Ph.D.)--Colorado School of Mines, 2017.
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
ISBN: 9781369628579Subjects--Topical Terms:
547123
Operations research.
Operations research applications in nuclear energy.
LDR
:03161nmm a2200289 4500
001
2125188
005
20171113075201.5
008
180830s2017 ||||||||||||||||| ||eng d
020
$a
9781369628579
035
$a
(MiAaPQ)AAI10255220
035
$a
AAI10255220
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Johnson, Benjamin Lloyd.
$3
3287239
245
1 0
$a
Operations research applications in nuclear energy.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2017
300
$a
127 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
500
$a
Advisers: Alexandra Newman; Jeffrey King.
502
$a
Thesis (Ph.D.)--Colorado School of Mines, 2017.
520
$a
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
590
$a
School code: 0052.
650
4
$a
Operations research.
$3
547123
650
4
$a
Nuclear engineering.
$3
595435
690
$a
0796
690
$a
0552
710
2
$a
Colorado School of Mines.
$b
Mechanical Engineering.
$3
2092097
773
0
$t
Dissertation Abstracts International
$g
78-07B(E).
790
$a
0052
791
$a
Ph.D.
792
$a
2017
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10255220
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9335800
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入