語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Synthesis, morphology and dynamics o...
~
Chuayprakong, Sunanta.
FindBook
Google Book
Amazon
博客來
Synthesis, morphology and dynamics of polyureas and their lithium ionomers.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Synthesis, morphology and dynamics of polyureas and their lithium ionomers./
作者:
Chuayprakong, Sunanta.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
161 p.
附註:
Source: Dissertation Abstracts International, Volume: 78-01(E), Section: B.
Contained By:
Dissertation Abstracts International78-01B(E).
標題:
Materials science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10154524
ISBN:
9781369096170
Synthesis, morphology and dynamics of polyureas and their lithium ionomers.
Chuayprakong, Sunanta.
Synthesis, morphology and dynamics of polyureas and their lithium ionomers.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 161 p.
Source: Dissertation Abstracts International, Volume: 78-01(E), Section: B.
Thesis (Ph.D.)--The Pennsylvania State University, 2016.
Electrolytes currently used in commercial lithium ion batteries have led to leakage and safety issues. Solvent-free solid polymer electrolytes (SPEs) offering high energy density are promising materials for lithium battery applications. SPEs require high modulus to separate the electrodes and suppress lithium dendrite growth. Microphase separation of the hard segments in amorphous polyureas (PUs) yields materials with higher moduli than typical low glass transition temperature (Tg) polymers. In this dissertation, several families of solution polymerized polyether-based PU ionomers were synthesized and their thermal, morphology and dynamic properties characterized as a function of chemical composition.
ISBN: 9781369096170Subjects--Topical Terms:
543314
Materials science.
Synthesis, morphology and dynamics of polyureas and their lithium ionomers.
LDR
:05144nmm a2200349 4500
001
2120524
005
20170719065348.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781369096170
035
$a
(MiAaPQ)AAI10154524
035
$a
AAI10154524
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chuayprakong, Sunanta.
$3
3282463
245
1 0
$a
Synthesis, morphology and dynamics of polyureas and their lithium ionomers.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
161 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-01(E), Section: B.
500
$a
Adviser: James Runt.
502
$a
Thesis (Ph.D.)--The Pennsylvania State University, 2016.
520
$a
Electrolytes currently used in commercial lithium ion batteries have led to leakage and safety issues. Solvent-free solid polymer electrolytes (SPEs) offering high energy density are promising materials for lithium battery applications. SPEs require high modulus to separate the electrodes and suppress lithium dendrite growth. Microphase separation of the hard segments in amorphous polyureas (PUs) yields materials with higher moduli than typical low glass transition temperature (Tg) polymers. In this dissertation, several families of solution polymerized polyether-based PU ionomers were synthesized and their thermal, morphology and dynamic properties characterized as a function of chemical composition.
520
$a
In the initial phase of this investigation, polyethylene oxide (PEO) diamines (with molecular weights = 200, 600, 1050, 2000, 3000 and 6000 g/mol) were polymerized with 4,4' methylene diphenyl diisocyanate (MDI). PUs with 200 and 600 g/mol PEO soft segments are amorphous and single phase. The amorphous PU having 1050 g/mol PEO segments exhibits a small degree of phase separation, as demonstrated by X-ray scattering. PUs with 2000, 3000 and 6000 g/mol PEO soft segments are semicrystalline and their melting points and degrees of crystallinity are lower than those of the precursor PEO diamines due to their attachment to rigid hard segments.
520
$a
Even though polypropylene oxide (PPO) does not dissolve cations as efficiently as PEO, PPO is not crystallizable and was chosen to create a second family of amorphous PUs. PPO-containing diamines ((Jeff400 (MW = 400 g/mol) and Jeff2000 (MW = 2000 g/mol)) and MDI were chosen as the neutral soft segment and the hard segment, respectively. 2,5-diaminobenzene sulfonate was successfully synthesized and used for preparing ionomers. The amount of ionic species in these ionomers was varied and quantified using 1H-NMR. Single Tgs were observed and they increased with increasing ionic content. No X-ray scattering peaks corresponding to microphase separation of hard and soft segments were detected, nor were ordered hydrogen bonded carbonyl bands in FTIR spectra, demonstrating that the Jeff400 PUs are single phase. Using dielectric relaxation spectroscopy (DRS), segmental relaxation temperatures also increase with increasing ionic species content.. Increasing the number of ionic groups increases the hard segment content, which results in higher DSC Tgs and slower fmaxs for the segmental relaxation processes.
520
$a
For the non-ionic and all of the ionic Jeff2000 PU samples that contain some nonionic soft segments, low temperature Tgs were observed that arise from microphase separated soft phases. X-ray scattering peaks related to microphase separation and ordered hydrogen bonded carbonyl bands were observed, reinforcing the conclusion of hard/soft segment segregation. The DRS segmental relaxation is associated with soft phase relaxation, with some of the ion dipoles participating in this process for the ionic samples. The ionomers could not be dialyzed due to water insolubility, but were purified by multiple precipitation in deionize water. Nevertheless, the findings suggest that the observed conductivity primarily arises from ionic impurities.
520
$a
A third family of PU ionomers was synthesized using an amorphous polypropylene oxide-b- polyethylene oxide-b-polypropylene oxide diamine (ED900, MW = 900 g/mol, 68% EO) and 2,5-diaminobenzene sulfonate. Hexamethylene diisocyanate was utilized as the hard segment as its high packing efficiency is known to facilitate microphase separation. The non-ionic ED900 PU and its ionomers with various ion contents were successfully synthesized. Low Tgs due to segregation of soft segments, X-ray scattering peaks related to microphase separation between segments, and ordered hydrogen bonded carbonyl bands were detected. Tapping mode atomic force microscopy was also used to explore the morphology of these microphase separated materials. DRS segmental relaxations are associated with soft phase. These materials were extensively dialyzed and their low conductivities suggest that the lithium ions are primarily trapped in hard domains.
590
$a
School code: 0176.
650
4
$a
Materials science.
$3
543314
650
4
$a
Nanotechnology.
$3
526235
650
4
$a
Polymer chemistry.
$3
3173488
690
$a
0794
690
$a
0652
690
$a
0495
710
2
$a
The Pennsylvania State University.
$3
699896
773
0
$t
Dissertation Abstracts International
$g
78-01B(E).
790
$a
0176
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10154524
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9331142
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入