Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Liquid crystal anchoring control and...
~
Xia, Yu.
Linked to FindBook
Google Book
Amazon
博客來
Liquid crystal anchoring control and its applications in responsive materials.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Liquid crystal anchoring control and its applications in responsive materials./
Author:
Xia, Yu.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
Description:
189 p.
Notes:
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Contained By:
Dissertation Abstracts International77-12B(E).
Subject:
Materials science. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10135046
ISBN:
9781339929798
Liquid crystal anchoring control and its applications in responsive materials.
Xia, Yu.
Liquid crystal anchoring control and its applications in responsive materials.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 189 p.
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Thesis (Ph.D.)--University of Pennsylvania, 2016.
Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of interests not only in the display industry, but also in the soft matter community, e.g., to direct colloidal assembly and phase separation of surfactants, and to actuate two-dimensional (2D) sheets into three-dimension (3D). The functionality and performance of LC materials extensively rely on the molecular ordering and alignment of LCs, which are dictated by LC anchoring at various boundaries. Therefore, this thesis focuses on the study of LC anchoring from both small molecule LCs and liquid crystal monomers (LCMs), which in turn guides my design of surface topography and surface chemistry to control formation of uniform LC defect structures over cm2 samples under complex boundary conditions. The ability to precisely embed defect structures in a LC material also allows me to exploit the responsiveness of LCs to create actuators and scaffolds to (dis)assemble nano- and micro-objects. Specifically, by exploiting the bulk disclinations formed in the nematic phase of 4-octyl-4'-cyanobiphenyl (8CB) surrounding the micropillar arrays, we demonstrate (dis)assembly of gold nano-rods (AuNRs) for dynamic tuning of surface plasmon resonance (SPR). Due to the highly temperature-sensitive elastic anisotropy of 8CB, the bulk disclinations and consequently the AuNR assemblies and SPR properties can be altered reversibly by heating and cooling the LC system. Then we design and synthesize a new type of nematic LCMs with a very large nematic window. Therefore, they can be faithfully aligned at various boundary conditions, analogous to that of small molecule LCs. After crosslinking LCMs into liquid crystal polymers (LCPs), we are able to study the LC assembly, director field, and topological defects using scanning electronic microscopy (SEM) at the 100 nm resolution. We then turn our attention to direct LCM alignment through controlling of surface chemistry and topography. We demonstrate the essential role of surface chemistry in the fabrication of liquid crystal elastomer (LCE) micropillar arrays during soft lithography. A monodomain LCM alignment is achieved in a poly(2-hydroxyethyl methacrylate) coated polydimethylsiloxane (PDMS) mold. After crosslinking, the resultant LCE micropillars display a large radial strain (~30%) when heated across the nematic-isotropic phase transition temperature (TNI). The understanding of surface alignment in LCMs is then transferred to LCEs with embedded topological defects. On micron-sized one-dimensional channels with planar surface chemistry, LCMs can be faithfully oriented along the local channel direction. After crosslinking, the 2D LCE sheets show pre-programmed shape transformation to complex 3D structures through bending and stretching of local directors when heated above T NI. Last, we control LC alignment and defect formation on a flat surface simply by using chemical patterns. Planar anchored SU8 is photopatterned on homoetropically anchored dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP) coated glass. By exploiting the pattern geometry, thus, boundary conditions, in combination with anisotropy of LC elasticity, we show that LC orientation can be precisely controlled over a large area and various types of topological defects are generated. Such defect structures can be further used to trap micro- and nanoparticles.
ISBN: 9781339929798Subjects--Topical Terms:
543314
Materials science.
Liquid crystal anchoring control and its applications in responsive materials.
LDR
:04333nmm a2200301 4500
001
2120492
005
20170719065345.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339929798
035
$a
(MiAaPQ)AAI10135046
035
$a
AAI10135046
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Xia, Yu.
$3
1931924
245
1 0
$a
Liquid crystal anchoring control and its applications in responsive materials.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
189 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
500
$a
Adviser: Shu Yang.
502
$a
Thesis (Ph.D.)--University of Pennsylvania, 2016.
520
$a
Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of interests not only in the display industry, but also in the soft matter community, e.g., to direct colloidal assembly and phase separation of surfactants, and to actuate two-dimensional (2D) sheets into three-dimension (3D). The functionality and performance of LC materials extensively rely on the molecular ordering and alignment of LCs, which are dictated by LC anchoring at various boundaries. Therefore, this thesis focuses on the study of LC anchoring from both small molecule LCs and liquid crystal monomers (LCMs), which in turn guides my design of surface topography and surface chemistry to control formation of uniform LC defect structures over cm2 samples under complex boundary conditions. The ability to precisely embed defect structures in a LC material also allows me to exploit the responsiveness of LCs to create actuators and scaffolds to (dis)assemble nano- and micro-objects. Specifically, by exploiting the bulk disclinations formed in the nematic phase of 4-octyl-4'-cyanobiphenyl (8CB) surrounding the micropillar arrays, we demonstrate (dis)assembly of gold nano-rods (AuNRs) for dynamic tuning of surface plasmon resonance (SPR). Due to the highly temperature-sensitive elastic anisotropy of 8CB, the bulk disclinations and consequently the AuNR assemblies and SPR properties can be altered reversibly by heating and cooling the LC system. Then we design and synthesize a new type of nematic LCMs with a very large nematic window. Therefore, they can be faithfully aligned at various boundary conditions, analogous to that of small molecule LCs. After crosslinking LCMs into liquid crystal polymers (LCPs), we are able to study the LC assembly, director field, and topological defects using scanning electronic microscopy (SEM) at the 100 nm resolution. We then turn our attention to direct LCM alignment through controlling of surface chemistry and topography. We demonstrate the essential role of surface chemistry in the fabrication of liquid crystal elastomer (LCE) micropillar arrays during soft lithography. A monodomain LCM alignment is achieved in a poly(2-hydroxyethyl methacrylate) coated polydimethylsiloxane (PDMS) mold. After crosslinking, the resultant LCE micropillars display a large radial strain (~30%) when heated across the nematic-isotropic phase transition temperature (TNI). The understanding of surface alignment in LCMs is then transferred to LCEs with embedded topological defects. On micron-sized one-dimensional channels with planar surface chemistry, LCMs can be faithfully oriented along the local channel direction. After crosslinking, the 2D LCE sheets show pre-programmed shape transformation to complex 3D structures through bending and stretching of local directors when heated above T NI. Last, we control LC alignment and defect formation on a flat surface simply by using chemical patterns. Planar anchored SU8 is photopatterned on homoetropically anchored dimethyloctadecyl[3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP) coated glass. By exploiting the pattern geometry, thus, boundary conditions, in combination with anisotropy of LC elasticity, we show that LC orientation can be precisely controlled over a large area and various types of topological defects are generated. Such defect structures can be further used to trap micro- and nanoparticles.
590
$a
School code: 0175.
650
4
$a
Materials science.
$3
543314
650
4
$a
Chemistry.
$3
516420
650
4
$a
Physics.
$3
516296
690
$a
0794
690
$a
0485
690
$a
0605
710
2
$a
University of Pennsylvania.
$b
Materials Science and Engineering.
$3
2102417
773
0
$t
Dissertation Abstracts International
$g
77-12B(E).
790
$a
0175
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10135046
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9331110
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login