語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fundamental and Applied Studies of P...
~
Imbrogno, Joseph.
FindBook
Google Book
Amazon
博客來
Fundamental and Applied Studies of Polymer Membranes.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fundamental and Applied Studies of Polymer Membranes./
作者:
Imbrogno, Joseph.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
面頁冊數:
339 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
Contained By:
Dissertation Abstracts International77-10B(E).
標題:
Chemical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10123929
ISBN:
9781339820705
Fundamental and Applied Studies of Polymer Membranes.
Imbrogno, Joseph.
Fundamental and Applied Studies of Polymer Membranes.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 339 p.
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2016.
Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells.
ISBN: 9781339820705Subjects--Topical Terms:
560457
Chemical engineering.
Fundamental and Applied Studies of Polymer Membranes.
LDR
:06143nmm a2200349 4500
001
2120456
005
20170719065342.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339820705
035
$a
(MiAaPQ)AAI10123929
035
$a
AAI10123929
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Imbrogno, Joseph.
$3
3282392
245
1 0
$a
Fundamental and Applied Studies of Polymer Membranes.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
339 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-10(E), Section: B.
500
$a
Adviser: Georges Belfort.
502
$a
Thesis (Ph.D.)--Rensselaer Polytechnic Institute, 2016.
520
$a
Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells.
520
$a
We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries.
520
$a
We have developed hydrophobic brush membranes that were able to selectively separate valuable organics (isobutanol) from water, while rejecting other undesirable species, such as enzymes, using pervaporation (PV). These membranes (grafted from nanofiltration (NF) support membranes) had a selectivity ∼1.5x higher than the current industrial standard, polydimethylsiloxane (PDMS), with alpha = 10.1 +/- 0.9 for our brush membranes and alpha = 6.7 +/- 0.1 for PDMS membranes. Since the mechanism of pervaporation is based on the solution diffusion (SD) model, these membranes may be used to desalinate water or fractionate gases since they are also based on the SD mechanism. We have discovered that hydrophobic brush membranes are able to reject monovalent salt ions. This type of membrane is analogous to carbon nanotubes (CNTs), which are believed to have extremely high water fluxes through them due to near frictionless flow caused by a lack of hydrogen bonding. Using these brush membranes we were able to achieve 42% monovalent (NaCl) salt rejection of simulated seawater (32,000 ppm salt). These membranes are easier to scale-up than current composite membranes produced using interfacial polymerization.
520
$a
We have been using SFG to study interfacial water on membrane surfaces. We believe that water interactions with the membrane surface and with the feed species, e.g. proteins, play a critical role during the fouling process. Relevant buffers, such as phosphate buffered saline (PBS) and phosphate buffer, contain ions that are known to restructure water at interfaces. Sum frequency generation spectroscopy (SFG) was used to characterize interfacial water structure at poly(ether sulfone) (PES) thin films in the presence of 0.01 M phosphate buffer (low salt) and 0.01 M phosphate buffered saline (high salt). Three model surfaces were studied: unmodified PES, hydrophobic alkane (C18) modified PES, and poly(ethylene glycol) (PEG) modified PES. In the presence of the low salt phosphate buffer (10 mM salt), phosphate anions were excluded from the PEG-modified PES film. This led to a charge separation between the phosphate anions and sodium cations, creating a surface potential which strongly ordered water molecules into the bulk. When using high salt PBS (138 mM salt) the sodium chloride ions screened this charge and reduced water ordering. Interestingly, this effect was the greatest for the PEG modified surface, with minor or no effects observed for the C18 modified PES and unmodified PES, respectively.
520
$a
Using our high throughput screening platform, we were able to determine that (N-[3-(dimethylamino)propyl] methacrylamide), DMAPMA, supported strong attachment and long-term self-renewal of mouse embryonic stem (ES) cells while preventing differentiation (maintaining pluripotency). After developing this platform, it was used to screen for a surface that could instead induce differentiation of bovine and human retinal pigment epithelium (RPE) cells while promoting cell growth. Several PEG based surfaces were able to induce cobblestone morphology of the RPE cells, which is indicative of differentiation. (Abstract shortened by UMI.).
590
$a
School code: 0185.
650
4
$a
Chemical engineering.
$3
560457
650
4
$a
Materials science.
$3
543314
650
4
$a
Polymer chemistry.
$3
3173488
690
$a
0542
690
$a
0794
690
$a
0495
710
2
$a
Rensselaer Polytechnic Institute.
$b
Chemical Engineering.
$3
2102834
773
0
$t
Dissertation Abstracts International
$g
77-10B(E).
790
$a
0185
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10123929
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9331074
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入