Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Topics in large-scale statistical in...
~
Regier, Jeffrey Carroll.
Linked to FindBook
Google Book
Amazon
博客來
Topics in large-scale statistical inference.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Topics in large-scale statistical inference./
Author:
Regier, Jeffrey Carroll.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2016,
Description:
133 p.
Notes:
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Contained By:
Dissertation Abstracts International78-07B(E).
Subject:
Statistics. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10192270
ISBN:
9781369558746
Topics in large-scale statistical inference.
Regier, Jeffrey Carroll.
Topics in large-scale statistical inference.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 133 p.
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2016.
Statistical inference may be large-scale in terms of the size of the dataset, the dimension of the data, or the amount of data needed for provably accurate inference. This dissertation presents three applications of large-scale statistical inference. Part I considers finding and characterizing stars and galaxies in images from telescopes. Part II considers figuring out who wrote what in large collection of articles, where authors often do not have unique names. Part III considers approximating a high-dimensional function based on a small number of observations, a common problem when interpreting computer experiments.
ISBN: 9781369558746Subjects--Topical Terms:
517247
Statistics.
Topics in large-scale statistical inference.
LDR
:01515nmm a2200289 4500
001
2118736
005
20170612093111.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781369558746
035
$a
(MiAaPQ)AAI10192270
035
$a
AAI10192270
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Regier, Jeffrey Carroll.
$3
3280575
245
1 0
$a
Topics in large-scale statistical inference.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
133 p.
500
$a
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
500
$a
Adviser: Jon D. McAuliffe.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2016.
520
$a
Statistical inference may be large-scale in terms of the size of the dataset, the dimension of the data, or the amount of data needed for provably accurate inference. This dissertation presents three applications of large-scale statistical inference. Part I considers finding and characterizing stars and galaxies in images from telescopes. Part II considers figuring out who wrote what in large collection of articles, where authors often do not have unique names. Part III considers approximating a high-dimensional function based on a small number of observations, a common problem when interpreting computer experiments.
590
$a
School code: 0028.
650
4
$a
Statistics.
$3
517247
650
4
$a
Astrophysics.
$3
535904
690
$a
0463
690
$a
0596
710
2
$a
University of California, Berkeley.
$b
Statistics.
$3
1676555
773
0
$t
Dissertation Abstracts International
$g
78-07B(E).
790
$a
0028
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10192270
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9329354
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login