語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Detect Spammers in Online Social Net...
~
Zhang, Yi.
FindBook
Google Book
Amazon
博客來
Detect Spammers in Online Social Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Detect Spammers in Online Social Networks./
作者:
Zhang, Yi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2015,
面頁冊數:
75 p.
附註:
Source: Masters Abstracts International, Volume: 54-03.
Contained By:
Masters Abstracts International54-03(E).
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1585028
ISBN:
9781321606959
Detect Spammers in Online Social Networks.
Zhang, Yi.
Detect Spammers in Online Social Networks.
- Ann Arbor : ProQuest Dissertations & Theses, 2015 - 75 p.
Source: Masters Abstracts International, Volume: 54-03.
Thesis (M.Sc.)--University of Windsor (Canada), 2015.
Fake followers in online social networks (OSNs) are the accounts that are created to boost the rank of some targets. These spammers can be generated by programs or human beings, making them hard to identify. In this thesis, we propose a novel spammer detection method by detecting near-duplicate accounts who share most of the followers.
ISBN: 9781321606959Subjects--Topical Terms:
523869
Computer science.
Detect Spammers in Online Social Networks.
LDR
:01865nmm a2200301 4500
001
2118570
005
20170612074623.5
008
180830s2015 ||||||||||||||||| ||eng d
020
$a
9781321606959
035
$a
(MiAaPQ)AAI1585028
035
$a
AAI1585028
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Yi.
$3
1029786
245
1 0
$a
Detect Spammers in Online Social Networks.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2015
300
$a
75 p.
500
$a
Source: Masters Abstracts International, Volume: 54-03.
500
$a
Adviser: J. Lu.
502
$a
Thesis (M.Sc.)--University of Windsor (Canada), 2015.
520
$a
Fake followers in online social networks (OSNs) are the accounts that are created to boost the rank of some targets. These spammers can be generated by programs or human beings, making them hard to identify. In this thesis, we propose a novel spammer detection method by detecting near-duplicate accounts who share most of the followers.
520
$a
It is hard to discover such near-duplicates on large social networks that provide limited remote access. We identify the near-duplicates and the corresponding spammers by estimating the Jaccard similarity using star sampling, a combination of uniform random sampling and breadth-first crawling. Then we applied our methods in Sina Weibo and Twitter. For Weibo, we find 395 near-duplicates, 12 millions suspected spammers and 741 millions spam links. In Twitter, we find 129 near-duplicates, 4.93 million suspected spammers and 2.608 billion spam links. Moreover, we cluster the near-duplicates and the corresponding spammers, and analyze the properties of each group.
590
$a
School code: 0115.
650
4
$a
Computer science.
$3
523869
650
4
$a
Web studies.
$3
2122754
690
$a
0984
690
$a
0646
710
2
$a
University of Windsor (Canada).
$b
COMPUTER SCIENCE.
$3
2093677
773
0
$t
Masters Abstracts International
$g
54-03(E).
790
$a
0115
791
$a
M.Sc.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1585028
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9329188
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入