語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Finite element and probabilistic ana...
~
Coombs, Dana Joseph.
FindBook
Google Book
Amazon
博客來
Finite element and probabilistic analysis of soft tissue structures of the human lumbar spine.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Finite element and probabilistic analysis of soft tissue structures of the human lumbar spine./
作者:
Coombs, Dana Joseph.
面頁冊數:
155 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-11(E), Section: B.
Contained By:
Dissertation Abstracts International77-11B(E).
標題:
Biomedical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10112498
ISBN:
9781339756523
Finite element and probabilistic analysis of soft tissue structures of the human lumbar spine.
Coombs, Dana Joseph.
Finite element and probabilistic analysis of soft tissue structures of the human lumbar spine.
- 155 p.
Source: Dissertation Abstracts International, Volume: 77-11(E), Section: B.
Thesis (Ph.D.)--University of Denver, 2016.
Human lumbar spine mechanics are influenced by soft tissue structures. Understanding and properly modeling these structures can help determine pathology, treatment, and implant design and performance. Finite element models of the L4-L5 level of the lumbar spine are often used, which include a representation of the intervertebral disc and spinal ligaments. Validation of these models are typically based on torque rotation data from a single subject or the models use average properties reported in literature. However, experimental testing reports variation up to 40% in ligament stiffness and even greater variability for annulus fibrosis properties. Probabilistic approaches enable consideration of the impact of intersubject variability on model outputs. However, they often require lengthy computation times.
ISBN: 9781339756523Subjects--Topical Terms:
535387
Biomedical engineering.
Finite element and probabilistic analysis of soft tissue structures of the human lumbar spine.
LDR
:04672nmm a2200325 4500
001
2114867
005
20161128141928.5
008
180830s2016 ||||||||||||||||| ||eng d
020
$a
9781339756523
035
$a
(MiAaPQ)AAI10112498
035
$a
AAI10112498
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Coombs, Dana Joseph.
$3
3276480
245
1 0
$a
Finite element and probabilistic analysis of soft tissue structures of the human lumbar spine.
300
$a
155 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-11(E), Section: B.
500
$a
Advisers: Paul J. Rullkoetter; Peter J. Laz.
502
$a
Thesis (Ph.D.)--University of Denver, 2016.
520
$a
Human lumbar spine mechanics are influenced by soft tissue structures. Understanding and properly modeling these structures can help determine pathology, treatment, and implant design and performance. Finite element models of the L4-L5 level of the lumbar spine are often used, which include a representation of the intervertebral disc and spinal ligaments. Validation of these models are typically based on torque rotation data from a single subject or the models use average properties reported in literature. However, experimental testing reports variation up to 40% in ligament stiffness and even greater variability for annulus fibrosis properties. Probabilistic approaches enable consideration of the impact of intersubject variability on model outputs. However, they often require lengthy computation times.
520
$a
The first objective of this dissertation was to develop a methodology to better calibrate constitutive models of the disc using displacement data of intradiscal points across the mid-transverse plane of an L4-L5 lumbar spine disc in addition to kinematics. It was hypothesized that this will result in a more accurate constitutive model. The second objective was to develop a comprehensive probabilistic representation to characterize variability in the parameters describing the soft tissue structures and to develop efficient Monte Carlo simulations methods of a finite element model of the L4-L5 functional spinal unit.
520
$a
The data used to calibrate constitutive models at intradiscal points across the disc was collected from compression, extension, flexion, and lateral bending. Optimization was used to calibrate the model parameters. Constitutive model types and the number of zones were compared. The best combination was a linear elastic constitutive model representing the nucleus pulposis and a Holzapfel-Gasser-Ogden model representing the annulus fibrosis divided into anterior, right lateral, left lateral, and posterior zones. The probabilistic representation of the ligaments and disc was determined based on direct mechanical test data as found in the literature. A single stiffness parameter was defined to characterize each ligament, with the anterior longitudinal ligament being the stiffest, while the posterior longitudinal ligament and interspinous ligament had the greatest coefficient of variation of 0.65 and 0.64, respectively. The posterior portion of the annulus fibrosis had the greatest stiffness and greatest variation up to 300% in circumferential loading. This probabilistic representation was used to evaluate the Sobol and descriptive variance reduction sampling methods, which were assessed for efficiency and accuracy in comparison to traditional random Monte Carlo sampling. Comparisons were based on output torque-rotation curves at the 10th and 90th percentile for flexion, extension, axial rotation, and lateral bending. The descriptive sampling technique best matched the random sampling technique, at the extremes of rotation, with a 3.6% mean difference. This was achieved with a 10X reduction in the number of iterations and computation time.
520
$a
Applications of a more accurately calibrated constitutive model of the NP and AF could be the development of nucleus replacement materials that more closely match the natural NP and prediction of activities which could cause disc herniation. The resulting probabilistic representation can be utilized to include intersubject variability in biomechanics evaluations. The improvements in efficiency of Monte Carlo simulations enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.
590
$a
School code: 0061.
650
4
$a
Biomedical engineering.
$3
535387
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Biomechanics.
$3
548685
690
$a
0541
690
$a
0548
690
$a
0648
710
2
$a
University of Denver.
$b
Computer Science and Engineering.
$3
3276481
773
0
$t
Dissertation Abstracts International
$g
77-11B(E).
790
$a
0061
791
$a
Ph.D.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10112498
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9325489
電子資源
01.外借(書)_YB
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入