語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Layered two-dimensional heterostruct...
~
Barrera, Sergio C. de la.
FindBook
Google Book
Amazon
博客來
Layered two-dimensional heterostructures and their tunneling characteristics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Layered two-dimensional heterostructures and their tunneling characteristics/ by Sergio C. de la Barrera.
作者:
Barrera, Sergio C. de la.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xvii, 141 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Tunneling (Physics) -
電子資源:
http://dx.doi.org/10.1007/978-3-319-69257-9
ISBN:
9783319692579
Layered two-dimensional heterostructures and their tunneling characteristics
Barrera, Sergio C. de la.
Layered two-dimensional heterostructures and their tunneling characteristics
[electronic resource] /by Sergio C. de la Barrera. - Cham :Springer International Publishing :2017. - xvii, 141 p. :ill., digital ;24 cm. - Springer theses, recognizing outstanding Ph.D. research,2190-5053. - Springer theses, recognizing outstanding Ph.D. research..
This thesis demonstrates that layered heterostructures of two-dimensional crystals graphene, hexagonal boron nitride, and transition metal dichalcogenides provide new and interesting interlayer transport phenomena. Low-energy electron microscopy is employed to study the surface of atomically thin WSe2 prepared by metal-organic chemical vapor deposition on epitaxial graphene substrates, and a method for unambiguously measuring the number of atomic layers is presented. Using very low-energy electrons to probe the surface of similar heterostructures, a relationship between extracted work function differences from the layers and the nature of the electrical contact between them is revealed. An extension of this analysis is applied to surface studies of MoSe2 prepared by molecular beam epitaxy on epitaxial graphene. A large work function difference is measured between the MoSe2 and graphene, and a model is provided which suggests that this observation results from an exceptional defect density in the MoSe2 film. The thesis expounds a theory for computing tunneling currents between two-dimensional crystals separated by a thin insulating barrier; a few situations resulting in resonant tunneling and negative differential resistance are illustrated by computed examples, as well as observed characteristics, for monolayer and bilayer graphene tunneling junctions and transistors.
ISBN: 9783319692579
Standard No.: 10.1007/978-3-319-69257-9doiSubjects--Topical Terms:
696407
Tunneling (Physics)
LC Class. No.: QC176.8.T8
Dewey Class. No.: 530.416
Layered two-dimensional heterostructures and their tunneling characteristics
LDR
:02442nmm a2200313 a 4500
001
2112601
003
DE-He213
005
20180523153313.0
006
m d
007
cr nn 008maaau
008
180719s2017 gw s 0 eng d
020
$a
9783319692579
$q
(electronic bk.)
020
$a
9783319692562
$q
(paper)
024
7
$a
10.1007/978-3-319-69257-9
$2
doi
035
$a
978-3-319-69257-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC176.8.T8
072
7
$a
TJFD5
$2
bicssc
072
7
$a
TEC008090
$2
bisacsh
082
0 4
$a
530.416
$2
23
090
$a
QC176.8.T8
$b
B272 2017
100
1
$a
Barrera, Sergio C. de la.
$3
3270476
245
1 0
$a
Layered two-dimensional heterostructures and their tunneling characteristics
$h
[electronic resource] /
$c
by Sergio C. de la Barrera.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xvii, 141 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses, recognizing outstanding Ph.D. research,
$x
2190-5053
520
$a
This thesis demonstrates that layered heterostructures of two-dimensional crystals graphene, hexagonal boron nitride, and transition metal dichalcogenides provide new and interesting interlayer transport phenomena. Low-energy electron microscopy is employed to study the surface of atomically thin WSe2 prepared by metal-organic chemical vapor deposition on epitaxial graphene substrates, and a method for unambiguously measuring the number of atomic layers is presented. Using very low-energy electrons to probe the surface of similar heterostructures, a relationship between extracted work function differences from the layers and the nature of the electrical contact between them is revealed. An extension of this analysis is applied to surface studies of MoSe2 prepared by molecular beam epitaxy on epitaxial graphene. A large work function difference is measured between the MoSe2 and graphene, and a model is provided which suggests that this observation results from an exceptional defect density in the MoSe2 film. The thesis expounds a theory for computing tunneling currents between two-dimensional crystals separated by a thin insulating barrier; a few situations resulting in resonant tunneling and negative differential resistance are illustrated by computed examples, as well as observed characteristics, for monolayer and bilayer graphene tunneling junctions and transistors.
650
0
$a
Tunneling (Physics)
$3
696407
650
0
$a
Heterostructures.
$3
714845
650
0
$a
Nanostructured materials.
$3
584856
650
1 4
$a
Physics.
$3
516296
650
2 4
$a
Semiconductors.
$3
516162
650
2 4
$a
Nanoscale Science and Technology.
$3
1244861
650
2 4
$a
Surface and Interface Science, Thin Films.
$3
1244633
650
2 4
$a
Spectroscopy and Microscopy.
$3
1066375
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springer theses, recognizing outstanding Ph.D. research.
$3
1619240
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-69257-9
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9324874
電子資源
11.線上閱覽_V
電子書
EB QC176.8.T8
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入