Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Ergodic optimization in the expandin...
~
Garibaldi, Eduardo.
Linked to FindBook
Google Book
Amazon
博客來
Ergodic optimization in the expanding case = concepts, tools and applications /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Ergodic optimization in the expanding case/ by Eduardo Garibaldi.
Reminder of title:
concepts, tools and applications /
Author:
Garibaldi, Eduardo.
Published:
Cham :Springer International Publishing : : 2017.,
Description:
viii, 73 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 01- Introduction -- Chapter 02- Duality -- Chapter 03- Calibrated sub-actions -- Chapter 04- Aubry set -- Chapter 05- Mane potential and Peierls barrier -- Chapter 06- Representation of calibrated sub-actions -- Chapter 07- Separating sub-actions -- Chapter 08- Further properties of sub-actions -- Chapter 09- Relations with the thermodynamic formalism -- Appendix- Bounded measurable sub-actions -- Bibliography.
Contained By:
Springer eBooks
Subject:
Mathematical optimization. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-66643-3
ISBN:
9783319666433
Ergodic optimization in the expanding case = concepts, tools and applications /
Garibaldi, Eduardo.
Ergodic optimization in the expanding case
concepts, tools and applications /[electronic resource] :by Eduardo Garibaldi. - Cham :Springer International Publishing :2017. - viii, 73 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
Chapter 01- Introduction -- Chapter 02- Duality -- Chapter 03- Calibrated sub-actions -- Chapter 04- Aubry set -- Chapter 05- Mane potential and Peierls barrier -- Chapter 06- Representation of calibrated sub-actions -- Chapter 07- Separating sub-actions -- Chapter 08- Further properties of sub-actions -- Chapter 09- Relations with the thermodynamic formalism -- Appendix- Bounded measurable sub-actions -- Bibliography.
This book focuses on the interpretation of ergodic optimal problems as questions of variational dynamics, employing a comparable approach to that of the Aubry-Mather theory for Lagrangian systems. Ergodic optimization is primarily concerned with the study of optimizing probability measures. This work presents and discusses the fundamental concepts of the theory, including the use and relevance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory.
ISBN: 9783319666433
Standard No.: 10.1007/978-3-319-66643-3doiSubjects--Topical Terms:
517763
Mathematical optimization.
LC Class. No.: QA402.5 / .G375 2017
Dewey Class. No.: 519.6
Ergodic optimization in the expanding case = concepts, tools and applications /
LDR
:02045nmm a2200325 a 4500
001
2109124
003
DE-He213
005
20180328115204.0
006
m d
007
cr nn 008maaau
008
180519s2017 gw s 0 eng d
020
$a
9783319666433
$q
(electronic bk.)
020
$a
9783319666426
$q
(paper)
024
7
$a
10.1007/978-3-319-66643-3
$2
doi
035
$a
978-3-319-66643-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.G375 2017
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.G232 2017
100
1
$a
Garibaldi, Eduardo.
$3
3259170
245
1 0
$a
Ergodic optimization in the expanding case
$h
[electronic resource] :
$b
concepts, tools and applications /
$c
by Eduardo Garibaldi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
viii, 73 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
Chapter 01- Introduction -- Chapter 02- Duality -- Chapter 03- Calibrated sub-actions -- Chapter 04- Aubry set -- Chapter 05- Mane potential and Peierls barrier -- Chapter 06- Representation of calibrated sub-actions -- Chapter 07- Separating sub-actions -- Chapter 08- Further properties of sub-actions -- Chapter 09- Relations with the thermodynamic formalism -- Appendix- Bounded measurable sub-actions -- Bibliography.
520
$a
This book focuses on the interpretation of ergodic optimal problems as questions of variational dynamics, employing a comparable approach to that of the Aubry-Mather theory for Lagrangian systems. Ergodic optimization is primarily concerned with the study of optimizing probability measures. This work presents and discusses the fundamental concepts of the theory, including the use and relevance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory.
650
0
$a
Mathematical optimization.
$3
517763
650
0
$a
Ergodic theory.
$3
555691
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
891276
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
898674
650
2 4
$a
Continuous Optimization.
$3
1566748
650
2 4
$a
Thermodynamics.
$3
517304
650
2 4
$a
Solid State Physics.
$3
1066374
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
1566700
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-66643-3
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9323526
電子資源
11.線上閱覽_V
電子書
EB QA402.5 .G375 2017
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login