語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Uncertainty quantification = an acce...
~
Soize, Christian.
FindBook
Google Book
Amazon
博客來
Uncertainty quantification = an accelerated course with advanced applications in computational engineering /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Uncertainty quantification/ by Christian Soize.
其他題名:
an accelerated course with advanced applications in computational engineering /
作者:
Soize, Christian.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xxii, 329 p. :ill. (some col.), digital ;24 cm.
內容註:
Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models -- Elements of Probability Theory -- Markov Process and Stochastic Differential Equation -- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors -- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties -- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties -- Fundamental Tools for Statistical Inverse Problems -- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics -- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design -- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media.
Contained By:
Springer eBooks
標題:
Uncertainty - Mathematical models. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-54339-0
ISBN:
9783319543390
Uncertainty quantification = an accelerated course with advanced applications in computational engineering /
Soize, Christian.
Uncertainty quantification
an accelerated course with advanced applications in computational engineering /[electronic resource] :by Christian Soize. - Cham :Springer International Publishing :2017. - xxii, 329 p. :ill. (some col.), digital ;24 cm. - Interdisciplinary applied mathematics,v.470939-6047 ;. - Interdisciplinary applied mathematics ;v.47..
Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models -- Elements of Probability Theory -- Markov Process and Stochastic Differential Equation -- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors -- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties -- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties -- Fundamental Tools for Statistical Inverse Problems -- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics -- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design -- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media.
ISBN: 9783319543390
Standard No.: 10.1007/978-3-319-54339-0doiSubjects--Topical Terms:
648813
Uncertainty
--Mathematical models.
LC Class. No.: QA273
Dewey Class. No.: 003.54
Uncertainty quantification = an accelerated course with advanced applications in computational engineering /
LDR
:01898nmm a2200325 a 4500
001
2097688
003
DE-He213
005
20170424115217.0
006
m d
007
cr nn 008maaau
008
171229s2017 gw s 0 eng d
020
$a
9783319543390
$q
(electronic bk.)
020
$a
9783319543383
$q
(paper)
024
7
$a
10.1007/978-3-319-54339-0
$2
doi
035
$a
978-3-319-54339-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA273
072
7
$a
PDE
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
003.54
$2
23
090
$a
QA273
$b
.S683 2017
100
1
$a
Soize, Christian.
$3
1641602
245
1 0
$a
Uncertainty quantification
$h
[electronic resource] :
$b
an accelerated course with advanced applications in computational engineering /
$c
by Christian Soize.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xxii, 329 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Interdisciplinary applied mathematics,
$x
0939-6047 ;
$v
v.47
505
0
$a
Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models -- Elements of Probability Theory -- Markov Process and Stochastic Differential Equation -- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors -- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties -- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties -- Fundamental Tools for Statistical Inverse Problems -- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics -- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design -- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media.
650
0
$a
Uncertainty
$x
Mathematical models.
$3
648813
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Computational Science and Engineering.
$3
893018
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
890892
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Interdisciplinary applied mathematics ;
$v
v.47.
$3
3236701
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-54339-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9319737
電子資源
11.線上閱覽_V
電子書
EB QA273
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入