Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Genetic algorithm essentials
~
SpringerLink (Online service)
Linked to FindBook
Google Book
Amazon
博客來
Genetic algorithm essentials
Record Type:
Electronic resources : Monograph/item
Title/Author:
Genetic algorithm essentials/ by Oliver Kramer.
Author:
Kramer, Oliver.
Published:
Cham :Springer International Publishing : : 2017.,
Description:
ix, 92 p. :ill., digital ;24 cm.
[NT 15003449]:
Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
Contained By:
Springer eBooks
Subject:
Genetic algorithms. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-52156-5
ISBN:
9783319521565
Genetic algorithm essentials
Kramer, Oliver.
Genetic algorithm essentials
[electronic resource] /by Oliver Kramer. - Cham :Springer International Publishing :2017. - ix, 92 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.6791860-949X ;. - Studies in computational intelligence ;v.679..
Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
ISBN: 9783319521565
Standard No.: 10.1007/978-3-319-52156-5doiSubjects--Topical Terms:
533907
Genetic algorithms.
LC Class. No.: QA402.5
Dewey Class. No.: 519.625
Genetic algorithm essentials
LDR
:02133nmm a2200325 a 4500
001
2089725
003
DE-He213
005
20170810131730.0
006
m d
007
cr nn 008maaau
008
171013s2017 gw s 0 eng d
020
$a
9783319521565
$q
(electronic bk.)
020
$a
9783319521558
$q
(paper)
024
7
$a
10.1007/978-3-319-52156-5
$2
doi
035
$a
978-3-319-52156-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
519.625
$2
23
090
$a
QA402.5
$b
.K89 2017
100
1
$a
Kramer, Oliver.
$3
924176
245
1 0
$a
Genetic algorithm essentials
$h
[electronic resource] /
$c
by Oliver Kramer.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
ix, 92 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.679
505
0
$a
Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
520
$a
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
650
0
$a
Genetic algorithms.
$3
533907
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.679.
$3
3220602
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-52156-5
950
$a
Engineering (Springer-11647)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9315897
電子資源
11.線上閱覽_V
電子書
EB QA402.5
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login