語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Genetic algorithm essentials
~
SpringerLink (Online service)
FindBook
Google Book
Amazon
博客來
Genetic algorithm essentials
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Genetic algorithm essentials/ by Oliver Kramer.
作者:
Kramer, Oliver.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
ix, 92 p. :ill., digital ;24 cm.
內容註:
Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
Contained By:
Springer eBooks
標題:
Genetic algorithms. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-52156-5
ISBN:
9783319521565
Genetic algorithm essentials
Kramer, Oliver.
Genetic algorithm essentials
[electronic resource] /by Oliver Kramer. - Cham :Springer International Publishing :2017. - ix, 92 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.6791860-949X ;. - Studies in computational intelligence ;v.679..
Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
ISBN: 9783319521565
Standard No.: 10.1007/978-3-319-52156-5doiSubjects--Topical Terms:
533907
Genetic algorithms.
LC Class. No.: QA402.5
Dewey Class. No.: 519.625
Genetic algorithm essentials
LDR
:02133nmm a2200325 a 4500
001
2089725
003
DE-He213
005
20170810131730.0
006
m d
007
cr nn 008maaau
008
171013s2017 gw s 0 eng d
020
$a
9783319521565
$q
(electronic bk.)
020
$a
9783319521558
$q
(paper)
024
7
$a
10.1007/978-3-319-52156-5
$2
doi
035
$a
978-3-319-52156-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
519.625
$2
23
090
$a
QA402.5
$b
.K89 2017
100
1
$a
Kramer, Oliver.
$3
924176
245
1 0
$a
Genetic algorithm essentials
$h
[electronic resource] /
$c
by Oliver Kramer.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
ix, 92 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.679
505
0
$a
Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
520
$a
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
650
0
$a
Genetic algorithms.
$3
533907
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.679.
$3
3220602
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-52156-5
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9315897
電子資源
11.線上閱覽_V
電子書
EB QA402.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入